
COE538 Microprocessor Systems
Lab 4: Motor Control

and
Using the Hardware Timer1

Peter Hiscocks
Department of Electrical and Computer Engineering

Ryerson University
phiscock@ee.ryerson.ca

Contents
1 Objectives 2

2 Overview 2

3 Motor Control Routines 2
3.1 Controlling individual bits . 2
3.2 Motor Routines . 3

4 The Hardware Timer 4
4.1 The HCS12 Timer Mechanism . 5
4.2 The Timer Overflow Flag . 5
4.3 Introduction to Interrupts . 5
4.4 Setting up the Timer Overflow Interrupt . 6
4.5 Debugging Interrupts . 7
4.6 Timer Overflow Counter: Summary . 8
4.7 Alarm Time . 9
4.8 Example: A Timed Delay . 9
4.9 A Potential Bug: Overflow of the Overflow Counter . 10

5 The Assignment 10
5.1 Motor Control . 11
5.2 Timer Overflow . 11
5.3 Timer Alarms . 11

6 Appendix A 11

7 Appendix B 12

8 Appendix C 13

9 References 14
1This lab was adapted to be used with the HCS12 microcontroller by V. Geurkov.

1

List of Figures
1 Motor Control, Programming Model . 3
2 Timer Overflow Routines (Part 1) . 7
3 Timer Overflow Routines (Part 2) . 8

1 Objectives
In this lab, we will develop

• Software routines to control the eebot motors.

• A software clock using the HCS12 interrupt-driven hardware timer overflow flag.

• A timed alarm mechanism that can be useful in controlling the eebot in various manoeuvres such as turns.

• A routine to read information from the eebot bumper swithches.

These routines will be used as subroutines in the Robot Roaming exercise of Lab 5.

2 Overview
Robot roaming behavior can be obtained with a very simple set of rules. Initially, the robot drives in a straight
line2 If it doesn’t encounter any obstacles, after a certain interval it stops, executes a turn, and then runs again in
a straight line.

If the robot encounters an obstacle, it executes a back-and-turn manoeuvre. It drives backward for a fixed
interval and then turns. Then it resumes driving forward in a straight line again.

All of these manoeuvres require timed delays, so that is our next challenge. First, we will develop basic
routines to control the eebot motors. Then, we will study the HCS12 hardware timer that will be used to create
the various time delays.

3 Motor Control Routines
A microcontroller communicates with output devices (such as motors) through PORTS. In the simplest case,
a port can be considered as a data register. The inputs of this register are connected to the internal data bus,
while the outputs are tied to external pins of the microcontroller. Each port is mapped into the address space of
the microcontroller. This means that 8 individual bits of some byte in memory are connected to 8 output pins
somewhere in the hardware. If the software bit corresponding to a particular line is set to a logic zero, then the
voltage on that line will be 0 volts (or close to it). If the software bit corresponding to that line is set to a logic
one, then the voltage on that line will be (approximately) 5 volts.

In the HCS12 eebot microcontroller system, we will use two ports that are controlled in this fashion.

3.1 Controlling individual bits
The first of these ports, PORTA is located at address $0000. In the eebot system, two bits of PORTA control the
direction of the two robot drive motors. Three other bits, as we will see later, determine which of the 6 optical
sensors is read on channel 1 of the A/D converter. One more bit enables the read operation. And the remaining 2
bits are not used.

The second of these ports, PORTT is located at $0240. Two bits of this port are used to control the speed
(On/Off) of two motors.

2Well, not quite straight. Both motors are powered equally and should ideally rotate at the same rate, driving the robot in a straight line. In
practice, one of the motors is a bit faster than the other and the path is slightly curved.

2

When individual control lines are mapped into the bits of a memory byte, we need routines that can set and
clear each of the individual bits. When you write to a location such as PORTA or PORTT, you potentially change
all 8 bits at once, and this is often undesirable.

Individual bits in a byte may be set or cleared using the Logical Operation instructions: AND, OR, EOR and
COM (often known as NOT). The logical operation is performed on the output location (PORTA or PORTT) and
a logical mask. The mask is another 8-bit byte that determines which bits are set and which are cleared. Each of
the two eebot drive motors is controlled by a speed bit and a direction bit, per the following table and figure (see
The eebot Technical Description document):

Motor Function Pin Notes

Supply

4V

Supply

Port

Starboard
Motor

4V

0=Fwd, 1=Rev

0=Fwd, 1=Rev

1=On, 0=Off

1=On, 0=Off

2

10

9

1

eebot

STARSPEED

STARDIR

PA0

PT4
PORTSPEED

PORTDIR

PT5

PA1

HCS12

Motor

Figure 1: Motor Control, Programming Model

3.2 Motor Routines
You will need 4 subroutines to control motor power, as follows:

Routine Name Notes

STARON Starboard motor ON

STAROFF Starboard motor OFF

PORTON Port motor ON

PORTOFF Port motor Off

You will need 4 subroutines to control motor direction, as follows:

3

You will need 4 subroutines to control motor direction, as follows:

Routine Name Notes

STARFWD Starboard motor FORWARD

STARREV Starboard motor REVERSE

PORTFWD Port motor FORWARD

PORTREV Port motor REVERSE

Each of these routines will be very short, since they just flip bits in the shadow registers and update one of

Each of these routines will be very short, since they just flip bits of the output register PORTA or PORTT.
However, when changing bits in PORTA or PORTT, use the AND and OR mask instructions to ensure that only
the desired bits are affected.

Write and assemble these 8 subroutines as one program. Assemble and download the program into memory,
as per usual. Use the Serial Monitor ”Step Over” instruction to execute the various subroutines and drive the
eebot motors. For example, with different subroutines, you should be able to start the Starboard motor in forward
direction and then start the Port motor in forward direction.

To energize the eebot, you will need to enable the LOGIC power switch and the MOTOR switch on the rear
panel of the robot.

CAUTION: Make sure the eebot wheels are lifted off the ground when you run these routines or the bot will
drive itself off the bench and be damaged.

Note: You can use PORTH of the bench microprocessor system to imitate (emulate) PORTA & PORTT of
the eebot system for debugging purposes. The PORTH pins are connected to LEDs (see the 9S12DG128 board
schematic), so that you can visually verify if the pins are controlled properly.

4 The Hardware Timer
The simplest method of creating a delay is the software loop, which we developed in previous exercises. The
software loop works well in simple applications, but for this program we need something more sophisticated.

The software loop has a major disadvantage: it requires continuous servicing. The computer must sit in
the software loop, updating the loop counter, so it is not available for any other tasks. It would be much more
convenient for the hardware to maintain a clock that the program could periodically consult to determine elapsed
time.

Then when we want computer program to do something for a period of time, the computer algorithm would
be something like this:

Read the current time Tc
Set the alarm time Ta to Tc+Td,

where Td is the desired delay
Repeat

.

.
(do something useful)

.

.
Until Tc > Ta

Providing the program checks the current time often enough, this will suffice to produce the desired delay.
The vague quantity often enough implies that the computer program has to check the time frequently compared

to the required resolution of the delay time. Conseqently, the block labelled do something useful cannot occupy
the computer program for any significant length of time. In the program we are building, the delays do not need
to be precise – we are worried about delays in the order of seconds and the timer resolution is in the order of
milliseconds – so this is not a difficult requirement to satisfy.

For this lab, we will take a semi-automatic approach: the clock will be updated automatically, and the software
will check it manually.

(There are other possibilities. For example, it is possible to have the HCS12 automatically call a certain routine
after a specified delay. We’ll tackle that later.)

4

4.1 The HCS12 Timer Mechanism
The timer subsystem of the HCS12 is quite powerful and consequently moderately complex. For our purposes in
this exercise, we will restrict ourselves to the 16 bit free running counter and the timer overflow flag.

The basis of the entire timer subsystem is a 16 bit counter called TCNT (memory location $0044). TCNT is
driven by the system clock, so the basic clock tick is 1/24 MHz = 41.67 nanoseconds. The counter free-runs, that
is, there is no way to stop it or reset it. The location $0044 is read-only3.

The TCNT must be enabled before in can run. Setting bit 7 of the TSCR1 register (memory location $0046)
enables the TCNT to count.

(Use the Serial Monitor to enable TCNT with the WB command and examine location $0044 with the DW
command. Because the counter is running continuously, it will be different every time you examine it.)

We would like to create delays in the order of a few seconds or so. Since TCNT is a 16 bit counter driven by
a 41.67 nanoseconds clock, it will overflow every 216 × (41.67 × 10−9) = 0.00273 seconds (= 2.73 ms). The
clock input to the TCNT can be prescaled by a factor of 128 at most. Therefore, the overflow will occur every
(128 × 2.73 =) 349.5 ms. This is still too short an interval to be useful. We need an additional counter stage to
divide this down even further to a useable time interval.

It would have been convenient if Motorola (Freescale) had provided an additional 8 bit hardware counter stage.
That would have provided a clock with a resolution of 349.5 milliseconds and a maximum count of 28×0.3495 =
89.5 seconds. If we selected the prescale factor equal to 16, the resolution and time count would accordingly
change to (16 × 2.73 =) 43.7 ms and 28 × 0.0437 = 11.2 seconds, which is more useful for this application.
Therefore, we will consider 16 as a default prescale value.

They didn’t provide the hardware, but they did provide a hook that allows us to do the additional counting in
software. Their reasoning ran along these lines:

”We will provide an overflow detector that allows the user to maintain additional counter stages in
software. This is acceptable because whatever routine does this will only have to operate every 43.7
milliseconds, and will therefore not cause much overhead. On the other hand, the previous stages
must be implemented in hardware, because they have to count much more frequently.”

4.2 The Timer Overflow Flag
The device that Motorola provided is the one bit timer overflow flag, known as TOF. This bit is the most significant
bit of register TFLG2 (memory location $004F). It is set every time the free running counter overflows4.

If you read location $004F, you will find that the high bit is effectively always set because it gets set every
0.0437 seconds. Taking the reciprocal, this is 23 times per second. So even if you cleared the flag (we’ll deal with
that next), you would be too slow to see it change.

We can use the timer overflow flag to maintain an 8 bit counter in software, because the timer overflow can be
used to cause an interrupt, which will service the counter routine automatically.

4.3 Introduction to Interrupts
We will discuss interrupts in detail in the lecture portion of this course. In these notes, we’ll simply provide a
brief overview and a cookbook approach to using the timer overflow interrupt.

You may think of the interrupt mechanism as a hardware triggered subroutine. A subroutine is normally called
with a JSR instruction. It may be called from any point in the program, and execution will return to the same
point when the subroutine executes the RTS instruction.

When an interrupt is triggered, the hardware causes execution to switch to an interrupt service routine (ISR).
The interrupt service routine does something useful. Then the last instruction in the ISR, which is always RTI
(Return From Interrupt), returns execution to the point in the program where the interrupt occured.

There are a number of interrupt systems on the HCS12 microprocessor. Each system has three components:

3It is possible to change the basic clock tick rate, but it turns out to be inconvenient and unhelpful to do so, so we’ll stick to the default of
41.67 nanoseconds.

4See the textbook or reference manual.

5

• A device flag that is set on occurance of the interrupt. (In our case, this is the TOF flag).

• An interrupt enable/disable bit, which determines whether an interrupt occurs when the device flag is set.

• An interrupt vector, which is the two-byte address of the interrupt subroutine.

When the timer interrupt is set up properly, each time a timer overflow occurs (every 0.0437 seconds, or 23
times per second), the timer overflow interrupt service routine will be called. This will simply increment an 8
bit software register (some location in RAM), and then return. Once this is running, we can access the software
counter as if it were an extension of TCNT, and use it for determining time delays.

One of the tasks of the interrupt service routine is to clear the device flag. If this is not done properly, the
interrupt will recur immediately the interrupt service routine returns (ie, when the RTI instruction executes),
effectively crashing the machine.

4.4 Setting up the Timer Overflow Interrupt
The interrupt mechanism is very powerful. It allows things to happen in the background of a computer program
at the whim of asynchronous hardware events. The foreground computer program does not need to be involved in
servicing the interrupt-driven routines.

Now we will provide instructions for setting up the timer overflow interrupt:
The interrupt service routine simply increments the overflow counter, clears the device flag and returns. The

clearing of the device flag is counter-intuitive:
To clear the device flag, you must write a logic 1 to the flag. You would think that it would be correct to

write a logic 0 to the flag to clear it, but not so with this device. Lesson: always read the manual.
So the TOF interrupt service routine is something like this:

TFLG2 EQU $004F ; MSB is the timer overflow flag
TOF_COUNTER DS.B 1 ; Overflow counter

TOF_ISR INC TOF_COUNTER ; Increment the overflow count
LDAA #%10000000 ; Clear the TOF flag
STAA TFLG2 ; --"--
RTI

Now we need a routine to turn the TOF interrupt on. There are three stages to this: we need to

• Set up the interrupt vector that points to TOF_ISR. This, it turns out, consists of putting an instruction to
jump to the TOF interrupt service routine at a magic location in the internal memory of the microprocessor.
The exact incantation is:

ORG $FFDE
FDB TOF_ISR

We’ll explain exactly why this works at a later time.

• Set the timer overflow interrupt enable bit, which is known as TOI. This has the effect of enabling the TOF
interrupt. This bit is found in the MSBit of the register TSCR2 (memory address $004D). The three LSBits
of the TSCR2 define the prescale factor for the TCNT. If we choose 100 for these bits, than the factor will
be 16. Therfore, the constand that must be written to TSCR2 is %100001005.

• Enable the Global Interrupt Flag. The interrupt mask bit in the Condition Code Register enables and
disables all interrupts, hence the term Global Interrupt flag. This is accomplished with the CLI instruction.
Interrupts are disabled globally with the SEI instruction.

Putting this together, we have the routines for servicing the TOF interrupt, enabling the TOF interrupt, and
disabling the TOF interrupt, as shown in figure 2 on page 7 and figure 3 on page 8.

5See the Reference Manual.

6

* Timer Overflow Demonstration

*
* This program contains routines to demonstrate the timer overflow

* interrupt on the HCS12.

* Instructions:

* Assemble this program and load it into memory.

* Use the Serial Monitor WW command to zero the TOF_COUNTER.

* Use the monitor GO 4000 command to start the TOF interrupt

* running. Then let the machine run for a few seconds

* so the TOF count accumulates to something.

* (It should be increasing about 23 counts per second.)

* Manually reset the HCS12 and examine TOF_COUNTER. It should

* contain some non-zero count value.

* Run the program again and manually reset again. The TOF_COUNTER

* should have increased from the previous value.

* Peter Hiscocks

* Register Definitions

TFLG2 EQU $004F ; Contains the TOF at MSB
TSCR1 EQU $0046 ; Contains the TEN (timer enable bit)
TSCR2 EQU $004D ; Contains the TOI (timer overflow interrupt enable bit)

ORG $3000 ; Where our TOF counter register lives
TOF_COUNTER RMB 1 ; (or DS.B) One byte overflow counter

ORG $4000 ; Where the code starts

* The following is the main routine. Start here.
START JSR ENABLE_TOF ; Start the TOF interrupt

CLI ; Enable global interrupts
LOOP BRA LOOP ; and then loop until manual reset

SWI ; Should never get here

Figure 2: Timer Overflow Routines (Part 1)

4.5 Debugging Interrupts
Interrupt routines can be very difficult to debug, and so some care is required in ensuring that they are set up
properly.

The best way to do this is

• Construct the ISR as a subroutine (the last statement is RTS), drive it from a stub, and as much as possible
verify that it works.

• As shown in figure 2 and figure 3, construct two other small subroutines, one that turns the interrupt ON,
and the other one that turns the interrupt OFF. The routine that enables the interrupt is also responsible for
making sure that the interrupt vector address and any other initial conditions (e.g. for the hardware) are set
up.

• After a careful check of the interrupt service routine code, replace the RTS instruction with RTI.

• Load the code into the microprocessor and use the monitor WB command to initialize the TOF_COUNTER
to zero.

• Use the monitor GO instruction to run the main routine at address START. This calls the subroutine ENABLE
_TOF that sets up the interrupt. The main routine then turns on global interrupts with the CLI instruction
and enters an endless loop: LOOP BRA LOOP. At this point, the TOF interrupt should be running correctly
and the TOF_COUNTER should be incrementing at a rate of 23 counts per second.

• Let the microprocessor run for a second or so and then manually reset it back to the Serial Monitor. Check
the overflow counter register and see if it is incrementing properly.

7

* Enable Timer Overflow

*
* This routine sets up the ISR vector and enables

* the TOF interrupt mask bit.

ENABLE_TOF LDD #TOF_ISR ; Setup the interrupt vector for timer overflow
STD $FFDE

LDAA #%10000000
STAA TSCR1 ; Enable TCNT by setting bit 7

* When enabling the timer overflow interrupt, it is prudent to clear

* the TOF flag so than an interrupt does not occur immediately, but

* rather on the next timer overflow.

STAA TFLG2 ; Clear the TOF flag by writing to bit 7
LDAA #%10000100 ; Turn timer overflow interrupt on by setting bit 7
STAA TSCR2 ; in TSCR2 and select prescale factor equal to 16
RTS

* Timer Overflow Interrupt Service Routine

* This routine is called on interrupt each time the free-running

* 16 bit counter overflows.

* Assuming that the timer prescaler bits PR0, PR1 and PR2 have

* been changed, the basic rate of the 16 bit free running

* counter is 667 nanoseconds, so overflows occur about 1/23

* second apart. The TOF_COUNTER may be used in time delays.

TOF_ISR INC TOF_COUNTER ; Increment the overflow counter
LDAA #%10000000 ; Clear the TOF flag
STAA TFLG2 ; by setting(!) bit 7
RTI ; Restore machine state, enable interrupts

**
* Disable the TOF interrupt

*
* The routine to disable the timer overflow interrupt is useful

* during debugging since the monitor ’trace’ function doesn’t

* work otherwise.

DISABLE_TOF LDAA #%00000100 ; Turn timer overflow interrupt off by clearing bit 7
STAA TSCR2 ; in TSCR2 and leave prescale factor at 16
RTS

Figure 3: Timer Overflow Routines (Part 2)

4.6 Timer Overflow Counter: Summary
Once we have the timer overflow interrupt subroutine up and running we have created an 8 bit clock with a
resolution of 0.0437 seconds per count that will run automatically behind whatever computer program we wish to
run.

The foreground computer program can refer to the 8 bit clock that is running in the background and use it to
determine the progress of a delay.

All three of the routines shown in figure 3 should be copied to your library and included in your robot guidance
computer program. When the program first starts up, it should call the ENABLE_TOF subroutine to start the timer-
overflow interrupt running. It should never be necessary in normal operation to call the routine DISABLE_TOF,
but it could be useful for debugging purposes.

8

4.7 Alarm Time
In this section, we show how to use the overflow counter as a general purpose delay counter. This will enable us
to specify that something will happen at some time in the future.

If the present time is Tp, and the time to the event is the delay time, then something should happen at time
Ta = Tp + Td, where Ta will be known as the alarm time.

There are two ways to detect when the alarm time has occurred: by polling and by interrupt. If the alarm is
polled, we check the time periodically to see if it has exceeded the alarm time – if it has, we do the required event.
In pseudocode:

If Tp > Ta then
Do the event

Alternatively, when the present time exceeds the alarm time, this causes an interrupt and the corresponding
interrupt service routine performs the required event. This is how the hardware timers of the HCS12 work, but we
will leave that to a future exercise.

These mechanisms have counterparts in the world of human behaviour. When you have an important appoint-
ment, you have two options for leaving on time: watch the clock closely (polling) or set the clock alarm so that it
gets your attention (an interrupt).

Polling is simple, but it requires that the present time be compared frequently against the alarm time. Other-
wise, there will be excessive latency between the time that the alarm should be discovered and the time that it is
actually discovered.

In this application, the time intervals need not be particularly precise and it is a simple matter to compare the
actual time against the alarm time so we will use polling to check the alarms.

4.8 Example: A Timed Delay
In this section, we’ll show an example of a timed delay, using the overflow counter, in assembly language.

If you were to run this program from the monitor, you would see the following: nothing would appear to
happen for 5 seconds, and then the monitor prompt would appear.

There are two parts to the routine: one to initialize the timer, and one to check it. We assume that the
TOF_COUNTER is maintained by its own interrupt service routine, so that it increments 23 times a second without
our intervention. The necessary code to do this must be included in this program and was shown in figure 3.

We need a naming convention for various registers, so we’ll use DT_ for delay time and AT_ for alarm time.

**
* Demo: Alarm using TOF Counter

*
* Delays for 5 seconds and then breaks to the monitor.

* Requires that the TOF_COUNTER be interrupt driven by overflow

* from the HCS12 free running counter TCNT

ORG $3000
TOF_COUNTER RMB 1 ; The timer, incremented at 23Hz
AT_DEMO RMB 1 ; The alarm time for this demo
DT_DEMO EQU 115 ; 5 second delay (at 23Hz)

ORG $4000
INIT_DELAY LDAA TOF_COUNTER ; Initialize the alarm time

ADDA #DT_DEMO ; by adding on the delay
STAA AT_DEMO ; and save it in the alarm

CHK_DELAY LDAA TOF_COUNTER ; If the current time
CMPA AT_DEMO ; equals the alarm time
BEQ STOP_HERE ; then stop here

NOP ; Do something during the display
BRA CHK_DELAY ; and check the alarm again

STOP_HERE SWI ; Done, break to the monitor

9

4.9 A Potential Bug: Overflow of the Overflow Counter
There is the possibility of a serious bug in this design.

When we are comparing numbers in a computer program, we are usually advised to avoid a test for equality
and instead use a test for greater than or less than. This is suggested because the representation of numbers in a
high level language is often in floating point, and so two numbers which are essentially equal may in fact differ in
one or more of the least significant bit positions.

So at first blush it would seem adviseable to adopt that practice here. Moreover, we might reason that if we’re
a little late in checking the TOF counter it won’t matter because the current time will have exceeded the alarm
time (Tc > Ta) and the comparison will detect that.

This will work in some situations but not in others. Let’s see why. Consider the following situation:

• The current time plus the delay time creates an alarm equal to %11111111 ($FF).

• The counter increments towards this value, but we don’t get around to checking it until it has gone a couple
of clock ticks past the alarm. The counter overflows at a count of %11111111, and so when we compare
it to the alarm it contains %00000001 ($01).

• At this point, the counter has passed the alarm, but because it has overflowed, it compares as less than the
alarm. So the delay would not terminate when it should, a serious error. In fact, if this situation continued,
the delay would never terminate!

(There is a human analogy to this problem. Suppose someone has asked you to meet them at noon, when the
clock reads 12. You happen to check the clock, and it reads 1. A literal interpretation of this is that you are not
late, because 1 is less than 12. In fact, you are 11 hours early! But the clock has overflowed, so you are actually
an hour late. We humans clock-readers take that into consideration. Clock overflow occurs twice a day under this
system, which adds to the possible confusion. One reason for the European convention of numbering the hours
on a 24 hour basis, is the fact that overflow occurs only once a day and at a time when not much is happening.)

There are various fixes for this problem. One way is to set up the counter so that it generates a carry bit every
time it overflows, and then take the carry bit into consideration. This then requires a two byte comparison, which
is a bit complicated.

There is a simpler alternative that will work in this situation. The counter is incremented every 44 milliseconds
or so. If each computer instruction takes approximately 167 nanoseconds to execute, then the computer can
execute something like 44× 10−3/167× 10−9 = 263, 500 instructions per counter tick. If the alarm is checked
more frequently than this, we will be sure to catch it at the instant it is exactly equal to the alarm time, which is
what we want. Assuming that the program will execute no more than 263, 500 instructions between each check
of the alarm, we should catch detect when the counter and alarm are equal.

If the original calculation of alarm time (present time plus delay time) overflows, then the counter will also
overflow, and the equality will still be caught.

It would be safer to check for the counter greater than the alarm time, and in a mission critical application we
would have to do that. But in this case, it shouldn’t be a problem.

5 The Assignment
There are three components to this lab exercise:

1. Motor control subroutines

2. The interrupt-driven timer overflow counter routines

3. Timer Alarms

Demonstrating any one of these components will result in a pass grade. Demonstrating both will result in a full
grade.

10

5.1 Motor Control
Create subroutines to control the eebot drive motors according to the information given previously in section 3.
Be prepared to demonstrate one or two of them when requested by the lab supervisor.

5.2 Timer Overflow
To get a mark for this section of the assignment, demonstrate that you have a working, interrupt driven overflow
counter. You can do this by assembling and installing the subroutines on the eebot or bench microcontroller board,
and then activating the routines with the monitor ”Step Over” instruction. Or, you can assemble and install a timed
(5 second) delay program. Activate it by the monitor ”Go” instruction.

5.3 Timer Alarms
For this section, you must create a three-stage alarm with displays on the LCD. The program should show A at
the start of the program, B after 1 seconds and then C after a further 2 seconds. To get credit, the alarm program
must be based on the interrupt timer concepts discussed in this lab. Software loops are not acceptable. If you
demonstrate this program, you do not need to demo that Timer Overflow is working.

Some hints on creating the programs can be found in Appendices A, B and C.

6 Appendix A
The Appendix A refers to assignment 1 for eebot.

**
* Motor Control *
**

BSET DDRA,%00000011
BSET DDRT,%00110000
JSR STARFWD
JSR PORTFWD
JSR STARON
JSR PORTON
JSR STARREV
JSR PORTREV
JSR STAROFF
JSR PORTOFF
BRA *

STARON LDAA PTT
ORAA #%00100000
STAA PTT
RTS

STAROFF LDAA PTT
ANDA #%11011111
STAA PTT
RTS

...

PORTFWD LDAA PORTA
ANDA #%11111110
STAA PORTA
RTS

PORTREV LDAA PORTA
ORAA #%00000001
STAA PTH
RTS

11

7 Appendix B
The Appendix B refers to assignment 2 for eebot.

**
* 5 Second Delay *
**
DT_DEMO EQU 115 ; 5 second delay

ORG $3850
TOF_COUNTER RMB 1
AT_DEMO RMB 1

ORG $4000
Entry LDS #$4000

JSR ENABLE_TOF ; Jump to TOF init
CLI

LDAA TOF_COUNTER
ADDA #DT_DEMO
STAA AT_DEMO

CHK_DELAY LDAA TOF_COUNTER
CMPA AT_DEMO
BEQ STOP_HERE

NOP ; Do something during the display
BRA CHK_DELAY ; and check the alarm again

STOP_HERE SWI

**
ENABLE_TOF LDAA #%10000000

STAA TSCR1 ; Enable TCNT
STAA TFLG2 ; Clear TOF
LDAA #%10000100 ; Enable TOI and select prescale factor equal to 16
STAA TSCR2
RTS

**
TOF_ISR INC TOF_COUNTER

LDAA ... ; Clear
STAA TFLG2 ; TOF
RTI

**
DISABLE_TOF LDAA #%00000100 ; Disable TOI and leave prescale factor at 16

STAA TSCR2
RTS

**
* Interrupt Vectors *
**

ORG $FFFE
DC.W Entry ; Reset Vector

ORG $FFDE
DC.W TOF_ISR ; Timer Overflow Interrupt Vector

12

8 Appendix C
The Appendix C refers to assignment 3 for eebot.

**
* Timer Alams *
**
;definitions
OneSec EQU 23 ; 1 second delay (at 23Hz)
TwoSec EQU 46 ; 2 second delay (at 23Hz)
LCD_DAT EQU PORTB ; LCD data port, bits - PB7,...,PB0
LCD_CNTR EQU PTJ ; LCD control port, bits - PJ7(E),PJ6(RS)
LCD_E EQU $80 ; LCD E-signal pin
LCD_RS EQU $40 ; LCD RS-signal pin

;variable/data section
ORG $3850 ; Where our TOF counter register lives

TOF_COUNTER RMB 1 ; The timer, incremented at 23Hz
AT_DEMO RMB 1 ; The alarm time for this demo

;code section
ORG $4000 ; Where the code starts

Entry:
_Startup:

LDS #$4000 ; initialize the stack pointer
JSR initLCD ; initialize the LCD
JSR clrLCD ; clear LCD & home cursor
JSR ENABLE_TOF ; Jump to TOF initialization
CLI ; Enable global interrupt

LDAA #’A’ ; Display A (for 1 sec)
JSR putcLCD ; --"--

LDAA TOF_COUNTER ; Initialize the alarm time
ADDA #OneSec ; by adding on the 1 sec delay
STAA AT_DEMO ; and save it in the alarm

CHK_DELAY_1 LDAA TOF_COUNTER ; If the current time
CMPA AT_DEMO ; equals the alarm time
BEQ A1 ; then display B
BRA CHK_DELAY_1 ; and check the alarm again

A1 LDAA #’B’ ; Display B (for 2 sec)
JSR putcLCD ; --"--

LDAA AT_DEMO ; Initialize the alarm time
ADDA ... ; by adding on the 2 sec delay
STAA ... ; and save it in the alarm

CHK_DELAY_2 LDAA TOF_COUNTER ; If the current time
CMPA ... ; equals the alarm time
BEQ A2 ; then display C
BRA CHK_DELAY_2 ; and check the alarm again

A2 LDAA #’C’ ; Display C (forever)
JSR putcLCD ; --"--
SWI

;subroutine section
initLCD ... ; same as in lab3
clrLCD ... ; --"--
del_50us ... ; --"--
cmd2LCD ... ; --"--
putcLCD ... ; --"--
dataMov ... ; --"--
ENABLE_TOF ... ; same as in Appendix B of this lab
TOF_ISR ... ; --"--

**** Interrupt Vectors ***** ; --"--

13

9 References
Schematics of the HSC12 Evaluation Board
Available on-line.

CPU12 Reference Manual
Motorola Document CPU12RM/AD REV 3, 4/2002
The authoritative source of information about the 68HC12 & HCS12 microcontrollers.

68HC11 Microcontroller, Construction and Technical Manual
Peter Hiscocks, 2001
Technical information on the MPP Board, 68HC11 Microprocessor Development System
Information on programming and interfacing the MPP Board
Available from Active Electronics, at the Victoria Park-Gordon Baker store in Toronto.

HCS12/9S12: An Introduction to Software and Hardware Interfacing
Han-Way Huang
Delmar Cengage Learning, 2010
A basic text on the HCS12 microcontroller.

14

