Assembly Language Coding Standards

Ken Clowes (kclowes@ee.ryerson.ca)

November 11, 2000

Contents

1

2

Introduction
Public Documentation

Assembly language coding
3.1 Numberso
3.2 Symbolic Constants
3.3 Names e
3.3.1 Symbolic constants
3.3.2 Subroutine and variable names
333 Labels
3.4 Formatting
3.5 Private implementation comments
3.6 Asimpleexample

Organization
4.1 Assembly language code organization

A Real Example

The asmdoc tool
A.1 Detailed description of asmdoc tags

Assembler conventions
B.1 A Structured Assembler

DRAFT November 11, 2000

15

16
18

19

1 Introduction 2

1 Introduction

This document describes coding standards for assembly language programs.
While the standards described could be used with any assembly language,
the examples assume the DECUS variant! of the 6811 assembly language
(i.e. the format used in the third year microprocessor course—ELE 538—at
Ryerson.)? Even more specifically, we describe writing a library module of
functions.

Some general background to coding standards in any language is described
in “General Coding Standards”[Clo].

2 Public Documentation

We use the term public documentation to describe the information a user of
a module needs to know about what can be done with the module and how
to use its features. Implementation details—how implementation works—
should not be public.

Each source code file is a module containing one or more subroutines.
The entire module should have a public comment describing its overall use
and each subroutine should be described. We use the convention that any
comment on a line beginning with ;; is a public comment.

For example, suppose a module called strings.asm contains several func-
tions similar to the C functions in the standard strings.h library. The public
documentation could look something like this using traditional comments.

;5 The string MODULE contains a collection of string routines
;5 The SUBROUTINE strlen determines the length of a null-terminated string...

20

;3 ENTRY CONDITIONS:

o Register X -- the starting address of the string
;5 EXIT CONDITIONS:

;5 Accumulator B contains the length of the string

'Written by Alan R. Baldwin at Kent State University and placed in the public domain.
2 Appendix B describes other versions of 6811 assembly language.

DRAFT November 11, 2000

2 Public Documentation

This informal kind of public comments may be all that is required. How-
ever, I suggest that each subroutine be more formally described with each of
the following features:

Name: Obviously every subroutine has a name that should evoke its meaning.
Description: A brief description of what the subroutine does.

Parameters: What are the parameters to the subroutine and how are they
passed.

Return value(s): What (if anything) does the subroutine return and how
does the caller obtain these values.

Side effects: What other side-effects (such as the modification of registers or
global variables) are done.

I have written a simple script—asmdoc®—which extracts these structured
comments and creates a cross-referenced HTML file suitable for Web viewing.

Keywords beginning with the @ character are used to structure the com-
ments. For example, some of the public comments for the strings module
are:

;5 Omodule strings
;5 This module contains a collection of string routines.

;; Oname strlen

;; Determines the length of a null-terminated string. If

;; the string is less than 256 characters in length, the correct
;5 length is returned in Accumulator B and the Carry bit in the

;; Condition Code register is cleared. Otherwise, 255 is returned

;; and the C bit is set.

;5 Oparam Register X -- the starting address of the string
;; Q@return AccB -- the length of the string (if less than 256
s characters).

s <dd>CC -- Carry bit Set if length > 255; else Cleared

3The asmdoc tool is described in Appendix A.

DRAFT November 11, 2000

3 Assembly language coding

;; @side none

;5 Oname strcpy
;; Copies a null-terminated string.

;5 Oparam X source string

;5 Oparam Y destination string

;3 Oreturn nothing

;; Oside Registers A, X, Y are modified.

The asmdoc tool converts these to HTML which can be viewed in a
browser; Figure 1 is a screen shot of some of the generated documentation.

It is useful to write the public documentation (and generate a more read-
able formatted version) before writing code. Documenting the interface pre-
cisely forces you to think about what you really want the code to do and you
may detect some ambiguities or inconsistencies in the public specifications.

For example, the interface to strlen is inconsistent with the one for
strcpy. In particular, the strlen is documented as having no side effects
(apart of course from the return values in Accumulator A and the Condition
Code register); however, strcpy is documented as modifying the registers A,
X and Y*. Once this inconsistency is detected, the programmer should decide
which convention to use and modify the documentation so that all interfaces
are reasonably consistent.

3 Assembly language coding

The best programmers are lazy—they want to be able to read, maintain,
modify and ensure the correctness of their software with as little effort as
possible. Curiously, writing source code that allows the programmer to be
lazy in the future (reading, testing, maintaining) requires hard work.

4The implementor of strlen is probably thinking that the registers used by the subrou-
tine can be pushed onto the stack before use and their values can be restored by popping
them off before returning, hence avoiding side effects. The implementor of strcpy, on
the other hand, is probably thinking this is the caller’s responsibility and the subroutine
will work faster without the pushing and popping. There are valid arguments for either
convention, but there is little justification for not using a single convention for closely
related routines in the same module.

DRAFT November 11, 2000

3 Assembly language coding

éDncumentation for the strings module

{This decumentadion was generated automagically from dhe file AsmSanple. asn &y asmdecon Oct 27, 2000.)
Thiz module containg a collecton of string routines, The routines are similar to some of the those in the Standard C strings

library.
Version: 10
Anthor: Een Clowes

Summary

strlen Determines the length of a null-terminated string,

strcopy Coples a mill-terminated siring.

streoat Appends a copy of string? 10 stringl,

Details

strlen

Determines the length of a null-terminated string. If the string is less than 256 characters in length, the correct length is
refurned in Accumulator B and the Carry bit in the Condidon Code register is cleared. Otherwise, 255 is returned and the C bit

is sef.
Since: 1.0
Parameters:
Register 3 —— the starting address of the string
Returns:
AccB —— the length of the string ({if less than 256 characters).
CC —— Carry bit Setiflength » 255 else Cleared
Side effects:
none
Examples:
The following shows an elementary use of strlen.

msg: . asciz "Hello world";

il.i:-c.#msg
jsr strlen ;on retwon B o<-- 11; Carcy is clear
beos tooEig

strcpy

Copies a null-terminated string.

T oo

Figure 1: Screen shot of formatted documentation

DRAFT November 11, 2000

3.1 Numbers

We now examine the nitty-gritty details of writing assembly language
code that is readable, maintainable and safer (than it otherwise would be)
and that allows the programmer to be lazy in the future.

3.1 Numbers

Assembly language programmers are only a small step away from the bottom
level binary machine language that the computer actually interprets. The
machine only “sees” bit patterns, but the assembly language programmer
can specify a particular pattern in various ways.

Let’s consider a simple example. Suppose the underlying bit pattern the
programmer wishes to express is “01000011”. This sequence of bit values
can have any number of higher level meanings. Some possibilities are:

e It represents the decimal number 67.

e It represents the opcode for a machine language instruction. For exam-
ple, we usually think of opcodes in hexadecimal (which is how they are
described in data sheets) and the 6811 instruction COMA has the opcode
0x43.

e It represents the ascii code for the letter ‘C’.

e It represents something that the programmer really thinks of as a bit
pattern; in this case, it can be expressed in hexadecimal(0x43), octal
(00103) or binary (0b01000011) notation.

All of the following assembly language instructions generate the identical
machine language code (0x8643). However, they express the bit pattern
“01000011” in different ways that more closely resemble the programmer’s
intent and are augmented with additional private comments that make the
intent even more explicit.

ldaa #67 ;expected average percent grade (rounded up)
ldaa #°C ;expected average letter grade
ldaa #0x43 ;0pcode for the COMA 6811 instruction

ldaa #0b01000011 ;DEVfoo cntrl: intrpt, pulse handshake, POS logic

DRAFT November 11, 2000

3.2 Symbolic Constants

3.2 Symbolic Constants

The previous examples stress that numbers should be expressed in a format
closest to the programmer’s abstract idea of the number. This alone, however,
is often not sufficient. Rather, important constants should be given symbolic
names that reflect their meaning.

As a simple example, the code above should be re-written by first defining
the values of symbolic constants (with meaningful names) as follows:

EXPECTED_AVG_PERCENT_GRADE = 67; (rounded up)
EXPECTED_AVG_LETTER_GRADE = ’C
OPCODE_COMA = 0x43

INT_ENABLE = 0b01000000
PULSE_HAND = 0b00000010
POS_LOGIC = 0b00000001

CTRL_IE_POS_PULSE = INT_ENABLE | PULSE_HAND | POS_LOGIC
The instructions can then be written so that their meaning is self-evident:

ldaa #EXPECTED_AVG_PERCENT_GRADE
ldaa #EXPECTED_AVG_LETTER_GRADE
ldaa #OPCODE_COMA

ldaa #CTRL_IE_POS_PULSE

Once again, all of these instructions produce the identical machine lan-
guage (0x8643).

Let’s look at this issue from the opposite point of view. Suppose that
the machine language for a section of code is 0xCCO2EEBD7123. The machine
language instructions can be disassembled to produce:

1dd #0x02EE
jsr 0x7123

It is conceivable (though unlikely) that this is what the assembly language
programmer wrote.

Suppose we also know that the subroutine at address 0x7123 simply de-
lays for the number of bus cycles specified in Accumulator D. We also assume
that the bus speed is 1 MHz (hence a bus cycle lasts 1 usec). It is now plau-
sible that the programmer wrote:

DRAFT November 11, 2000

3.2 Symbolic Constants

; delay for 750 microseconds
1ldd #750
jsr delay

The program is now more readable. It is also safer since the assembler will
figure out the correct address of the delay subroutine. Had the programmer
really written jsr 0x7123, she would have to check that the address was
correct when any changes were made to the source code; furthermore, if she
mis-typed “7123” as “7132”, the assembler would not detect the error. With
the symbolic name, no complex address calculations are required and if she
had mis-typed “delay” as “dealy”, the assembler would signal an “undefined
symbol” error message.

The remaining problem with the source code is the appearance of the
“magic number” 750 embedded into an instruction. To see the potential for
mischief, suppose that 750 is embedded into several 1dd #750 instructions
and that sometimes 750 means the delay time in microseconds but on other
occasions it represents the hourly wages in cents (i.e. $7.50/hour) for a
hamburger flipper. If we want to change all the 750 usec delays to 800
usec, we have to be very careful. The solution, of course, is to use symbolic
constants as follows:

MAC_WAGES = 750 ;units = pennies per hour
DELAY = 750 ;units = microseconds

1dd #DELAY
jsr delay

1dd #MAC_WAGES
jsr payMe

1dd #DELAY
jsr delay

DRAFT November 11, 2000

3.3 Names

It is now very simple to change all the delay times and not change the
restaurant wages by editing a symbol definition. This makes a lazy program-
mer happy (they don’t even have to understand the source code; reading the
comments for the symbol definitions is sufficient) and the modifications are
safer.

But we can do even better. If the program is to run on a microproces-
sor with a 2 MHz bus, all the constants that depend on a 1 MHz bus will
have to change. Once again we can satisfy the lazy programmer and make
modifications more safely with the following:

CYCLES_PER_MICRO = 1
DELAY_IN_MICROS = 750 ;microseconds
DELAY_PARAM = CYCLES_PER_MICRO * DELAY_IN_MICROS

1dd #DELAY_PARAM
jsr delay

3.3 Names

Assembly language is a symbolic language and a competent programmer
chooses sensible names for constants, subroutines, variables and labels.

One important aspect of names (especially ones that are exported) is
the possible implementation specific limitations on the length of names and
their case sensitivity. For example, some assemblers are case insensitive, but
others are not. Hence it is a good rule of thumb to avoid names that differ
only by the case of letters. This rule does not mean that you should use only
upper-case or only lower-case names. You can and should use different cases
as a visual clue to the reader of the source code.

Some assemblers or linkers limit the meaningful length of symbols to 8
characters, so it is a good idea (for portability) to ensure that all symbols
are unique in their initial 8 characters®.

5Hence symbols like EXPECTED_AVG_LETTER_GRADE and EXPECTED_AVG_PERCENT_GRADE
may cause problems. In the DECUS environment, the symbols are treated as distinct only
within a module; if they were global, their names would conflict because they do not differ
in the first 8 characters.

DRAFT November 11, 2000

3.3 Names

3.3.1 Symbolic constants

The importance of using symbolic constants instead of embedding magic
numbers into source code has already been discussed. But what kind of
names should be used? As always, the most important rules are to use
“common sense” and be consistent.

My preference for symbolic constants is to give them clearly descriptive
names using upper-case letters. For multi-word names, I prefer using the
underscore character (_) to separate the words.

In the case of names that are defined by manufacturers’ data sheets, it is
preferable to use the established name rather than inventing your own. For
example, use the name ADCTL for the 6811’s A /D control register rather than
something like AD_CONTROL_REGISTER.

Note also that in the case of built-in device registers (usually memory
mapped in the memory space starting at 0x1000 for the 6811), there are
two common ways to address a register: either you can use the absolute
address or use indexed addressing with IX containing the base address of the
register area. Since indexed addressing is the most common, my preference
for address equates is:

REGBAS 0x1000 ;Base address of I/0 register block
ADCTL 0x30 ;0ffset to the A/D control register
ADCTL_ABS = REGBAS + ADCTL ;Absolute address of A/D control reg.

ldx #REGBAS

;The following two instructions do the same thing:
staa ADCTL,X ;indexed addressing ==> 2-bytes, 4 cycles
staa ADCTL_ABS ;extended addressing ==> 3-bytes, 4 cycles

3.3.2 Subroutine and variable names

Subroutines and variables should be given descriptive names; this is espe-
cially important for those that are exported (i.e. are described in the public
documentation of the interface).

My preference is to use either short lower case names (especially for sub-
routines that are similar to standard C library functions such as strlen).
In the case of more obscure subroutines with multi-word names, I often use
upper case to highlight the beginning of each word (such as DrawRectangle).

DRAFT November 11, 2000

3.3 Names

11

Names of subroutines or variables that are meant to be accessed from
either assembly code or higher level languages such as C must begin with
an underscore (_) character. (For example, the a subroutine named strlen
could not be called from C but one called _strlen could be.)

3.3.3 Labels

Labels should be used for the targets of all branch statements. (i.e. avoid
statements with explicit relative addressing such as bra .+3.)

The organization of assembly language programs should follow structured
techniques rather than unorganized “spaghetti code”. For example, consider
the following pseudo-code design of a program fragment:

##define FOO 5
if (AccA == F00) {

IX++;
AccB++;
}
IV++;

When translated into assembler, there has to be a conditional branch
around the “then clause” and it seems reasonable to label the target of the
branch as “endif” as shown below:

FOO = 5
cmpa #FOO
bne endif
inx
incb
endif:
iny

Unfortunately, if there is more than one “if statement”, the “endif” la-
bel cannot be re-used. One way around the problem is to use labels like
“endif_1", “endif_2” and so on. For larger modules, I prepend an ab-
breviation of the subroutine name obtaining labels like 1en_ef1. It is also
permissible, of course, to use more meaningful labels for branch targets such
as “bad” or “oops” or “done”.

DRAFT November 11, 2000

3.4 Formatting 12

3.4 Formatting

Precise standards for formatting are an individual or organizational choice.
Whatever standards you adopt should aid the reader of the source code and
be applied consistently. In particular, the mere fact that your source code is
legal does not justify ugly, inconsistent formatting. Avoid writing code like:

FOO = 5
cmpa #FOO
bne endif
inx
incb
endif:iny

I recommend that you indent code (or use horizontal space) in some
sensible fashion (but avoid tabs, use spaces) and limit the length of lines to
80 characters or less.

If you use (x)emacs, you can add the following to the ~/.emacs file:

; This adds additional extensions which indicate files normally
; handled by asm-mode
(setq auto-mode-alist
(append ’(("\\.asm$" . asm-mode)
)
auto-mode-alist))
; Use auto-fill-mode (minor mode) in asm-mode
; Can be annoying...you may wish to turn it off
(add-hook ’asm-mode-hook ’turn-on-auto-fill)

;show line-numbers in the mode-line
(setq line-number-mode t)

3.5 Private implementation comments

Assembly language has far fewer structured flow control and data typing fea-
tures than high level languages do. Consequently, it is common for assembly
language programs to be commented in far more detail than a high level
language would be. Remember, however, that these detailed implementation
comments are not meant to be read by someone who merely wants to use a

DRAFT November 11, 2000

3.6 A simple example

13

subroutine you have written. All the information they require should be in
the public comments.

Although comments may be quite detailed, keep in mind that they are
only meant to be read by an assembly language programmer who wants to
understand or modify your code. Do not insult their intelligence with useless
comments like:

inca ; Increment Accumulator A by one.

3.6 A simple example

We can put some of the ideas together with a simple example. Suppose
Accumulator A contains the binary representation of a decimal digit (i.e. a
number between 0-9) and we want to transform it into the character repre-
sentation of the digit.

A straightforward, but poor, way of doing this would be:

adda #0x30 ;even worse would be adda #48

Much better, of course (at least if you have been reading carefully) would
be:

adda #’0

However, we should also check that the initial value in Accumulator A is
valid. We should also specify what to do if it is not valid; perhaps, we could
return the character ‘7’ if the digit were invalid. We could transform the
whole sequence into a subroutine, obtaining:

ILLEGAL_DIGIT_RETURN = ’7
digtoa:
tsta
bmi bad ;the digit must be >= 0
cmpa #9
bhi bad ;it also must be <= 9
adda #’0
rts
bad: ldaa #ILLEGAL_DIGIT_RETURN
rts

Of course, public documentation of the digtoa subroutine interface should
have been written first, but we leave this as an exercise.

DRAFT November 11, 2000

4 Organization

14

4 Organization

Each project should have its own directory. The directory should always
contain a README file that briefly describes what the project is about and the
important files in the directory.

There should also be a Makefile. Normally, the default target for make
should create any object modules or .s19 files and documentation files re-
quired by the user.

Other common targets are:

clean: Removes generated files.
doc: Creates documentation files.
archive: Creates an archive of source files.

test: Runs tests on the software.

4.1 Assembly language code organization

Modern assemblers and linkers allow the programmer to be less concerned
with the absolute address of entities when writing their programs and allow
allow logically distinct portions of the assembly code to be organized into
distinct areas or segments that the linker can deal with.

For example, I tend to organize even the most trivial program into at
least two sections: one for code and another for data. A general template
(excluding public comments) looks like:

; Symbolic constants
definitions of symbol constants go here

.area DATA
variables go here

.area _CODE
actual instructions go here

One advantage of doing this (even in trivial programs) is that you can set
the actual absolute address of each of the segments at link time. On simple

DRAFT November 11, 2000

5 A Real Example 15

programs, I often set the start of the data area to 0x6000 and the start of
the code area to 0x6200. By placing important variables at the beginning
of the data segment, I can view many of them just by examining a memory
dump of 0x6000-0x6010.

Another advantage is the ability to intermix .area DATA and .area _CODE
directives. For example, if you have several subroutines where some use global
memory references common to all of them and some also use static references
that are private, you can write code like:

.area DATA
common wvariables go here

;foo starts here...
.area DATA
foo wariables go here

.area _CODE ;for the foo routine
foo:
actual instructions for "foo’’ go here

;bar starts here...
.area DATA
bar vartables go here

.area _CODE ;for the bar routine
bar:
actual instructions for "bar’’ go here

5 A Real Example

I have written a real example illustrating many of the points discussed here.
This example also illustrates the use of makefiles and how to test software.

The example is self-documenting. To obtain a copy and try it out do the
following:

1. Create a new directory and change to it. (For example mkdir coding; cd coding.)

2. Copy the example archive and unpack it with the commands:

DRAFT November 11, 2000

A The asmdoc tool

16

cp “kclowes/public/CodStdEx.tgz
zcat CodStdEx.tgz | tar xvf -

3. Use Netscape to examine the directory you are in. Click on the file
called README and read it.

4. In the shell, invoke the command make.
5. Hit the reload button in Netscape to see the new directory listing.

6. There are lots more files now. Browse some of them (especially the
.html ones; a good starting point is testl.html.)

7. Once you get the general idea of what is going on (but before your eyes
glaze over), run the command make ex in the shell, read the newly
created file exercises.html and do what you can...

A The asmdoc tool

The asmdoc tool is a simple little program (actually a perl script) that trans-
lates public comments as described here into formatted and cross-referenced
HTML files.

To use asmdoc, add public comments to an assembly language file, say
foo.asm and invoke the command asmdoc foo.asm. A HTML file with the
same base name (foo.html in this case) will be generated and can be viewed
with a browser such as Netscape.

All public comments must be on lines that begin with two semi-colons
(55)-

Some special tags are used and begin with the @ character. In particular,
the first public comment should be:

;5 Gmodule Your_module_name
Until the next special tag word (one starting with @), the following public

comments are basically treated as paragraphs; a blank public comment line
separates paragraphs. For example:

DRAFT November 11, 2000

A The asmdoc tool

;;This is the beginning of a paragraph. Here is the second

; ;sentence. Boring stuff...but the next paragraphs are elegant.
; ;Fourscore and seven years ago our fathers brought forth on this
;;continent a new nation, conceived in liberty and dedicated to the

; ;proposition that all men are created equal.

;;Now we are engaged in a great civil war, testing whether that nation
;;0r any nation so conceived and so dedicated can long endure. We are

The HTML browser will reformat the paragraphs so that they are justified
on the screen so don’t worry too much about the visual formatting of the
comments in the source code. If you know HTML, you can add your own
HTML directives. For example, the Boring uses HTML markup
commands to display the word “Boring” in bold.

While you can add any paragraphs you want after the @module tag (even
the Gettysburg Address), you should write zero or more paragraphs that
describe the module in general terms.

You can also use other special tags like @version, @author and @example.
(see below for their precise meanings) in the module section if you wish.

Following the module section, each public subroutine should be described.
The public documentation of a subroutine must begin with the special tag
@name followed by the name of the subroutine being documented. For exam-
ple:

;; Oname strlen

You can then include any number of free form paragraphs that describe
the subroutine. The very first sentence should be short and will be used in the
summary section that asmdoc generates to briefly describe each documented
subroutine and provide a link to the detailed documentation. Consequently,
there must be at least one sentence following a @name tag.

Following the general description of the subroutine you should use the
@param tag for each (if any) parameters passed to the routine. Next, the way
any results are returned should be described with the @return tag. If there
are any additional side effects (such as the modification of other registers or
global variables), they should be commented with the @side tag.

You may also want to include examples of use; use the @example tag
to introduce them. Since examples usually include a few lines of assembly

DRAFT November 11, 2000

A.1 Detailed description of asmdoc tags

18

that we do not wish the browser to format these lines as a paragraph. The
HTML “pre” directive (for pre-formatted) tells the browser to render the
lines between the <PRE> and </PRE> exactly as you typed them. (Of course,
asmdoc will remove the leading semi-colons.) For example:

;5 Qexample

;; The following shows an elementary use of strlen.
;5 <PRE>

;; msg: .asciz "Hello world";

s 1dx #msg

M jsr strlen ;on return B <-- 11; Carry is clear
M bcs tooBig

;3 </PRE>

A.1 Detailed description of asmdoc tags

@module: The module tag is required. There must be only one in the source
code file and it must appear on the first public comment line. The
syntax for it use is:

M Omodule module_name
Followed by paragraphs describing the module

and possibly with the tags: Q@uersion, @author, Q@example

The module section ends with the first @name tag.
@name: Every documented subroutine begins with the @name tag:

;; Oname subroutine_name
Description follows...

@version: If used, there should only be one @version tag and it should be
in the module section:

;3 @version wversion_name

DRAFT November 11, 2000

B Assembler conventions

@param: Each parameter is described with this tag:

;; @param name and description for first parameter
;; @param name and description for second parameter
etc....

@since:
@author:
@Qreturn:

@side:

@example:

B Assembler conventions

There are several different syntaxes for assemblers. Most of the differences
involve assembler directives.

Table 1 shows some of the differences between the DECUS and Motorola
assemblers commonly used at Ryerson.

Directive DECUS example | Motorola example
Equates FOO = 123 FOO EQU 123
Hex numbers 0x1A $1A
Defining bytes .db 123 FCB 123
Defining words .dw 123 FDB 123
Reserving bytes .ds 5 RMB 5

Table 1: Different assembler conventions

It should not be too difficult to write a text transformation program to
convert from one style to another. Any volunteers?

DRAFT November 11, 2000

B.1 A Structured Assembler

20

B.1 A Structured Assembler

Traditional assemblers differ in conventions, but I believe a structured as-
sembler could make the assembly-language programmer’s life easier.

One aspect of most assembly languages I am aware of is the lack of sup-
port for structured flow control. This seems to be the “natural” consequence
of the lack of this feature at the machine language level; at this level the only
way to change the program counter from its default behavior is with the
conditional or unconditional “goto” mechanism. But this basic fact does not
imply that assembly language programs should be designed using unstruc-
tured flow control nor that an assembly language cannot offer some help for
such designs. Let me be absolutely clear that the resulting assembly syn-
tax is still assembler: every syntactical convention of a traditional assembler
is still available and every line of source code translates into a single ma-
chine language instruction or traditional assembler directive or label. It is
an assembler, not a very primitive high-level language.

I have not yet written this kind of structured assembler (but I hope a
student may consider the implementation for a senior project).

I can briefly explain the concept with some simple examples.

Consider first the simplest structured flow control statement: the if state-
ment. We might design in pseudo-C something like:

#define FOO 5
if (AccA == F00) {

RegX++;
AccB++;
}
RegY++;

This can be translated into assembler:

FOO = 5
cmpa #F0O
bne endif
inx
incb
endif:
iny

DRAFT November 11, 2000

B.1 A Structured Assembler

21

The translation is straightforward except for coming up with the label
endif. (Sure, some assemblers allow local target label names that can be
reused. While this is better than nothing, the syntax is often obscure and
the fundamental problem of forcing the programmer to come with a label is
not addressed.)

With a structured assembler, the assembly language code would be:

FOO = 5
cmpa #FOO
if ==
inx
incb
}

iny

In this case the curly braces delimit the extent of the “then clause”. The
programmer, however, is relieved of the task of generating a label for the first
instruction following the then-clause; the structured assembler will do this
for her.

There are two other advantages:

1. The “sense” of the original design is maintained. The structured assem-
bler will translate the if == instruction into the machine instruction
corresponding to bne endif.

2. The use of braces also allows clear indentation (possibly automatic) to
increase the readability of the code.

Let’s now consider the next more complex flow control structure—the
if. . . else structure. The pseudo-C design is:

#define FOO 5

if (AccA == F00) {
RegX++;

} else {
AccB++;

b
RegY++;

The traditional assembler implementation is:

DRAFT November 11, 2000

B.1 A Structured Assembler 22

FOO = 5
cmpa #F0O
bne else
inx
bra endif
else:
incb
endif:
iny

With a structured assembler, we would write:

FOO = 5
cmpa #FOO
if ==
inx
} else {
incb
}

iny

Once again, the transformation from the structured syntax to traditional
forms is straightforward with labels added for the beginning of the “else
clause” and the continuation following the “endif”. Note that it is still as-
sembler with one machine instruction per assembler instruction; as before,
the if == structured instruction is transformed to a bne else traditional
instruction. Of course, there also has to be an unconditional branch around
the “else” part at the end of the “then” clause. In effect, the structured
instruction } elseq{ is transformed into the necessary branch.

clra
while (cc) { ; translated to bcs endWhile
ldx #"Hello" ; read-only static string created
putstr() ; translated to jsr putstr
inca
} ; translated to bra ... and endWhile label added

One advantage of using putstr () instead of jsr putstr is the ability to
translate the line either into a jsr instruction or to expand it in-line (with
flags in the assembler or with pragmas).

DRAFT November 11, 2000

REFERENCES

23

References

[Clo] Ken Clowes. General Coding Standards. file: CodingStdGen.ps.

DRAFT November 11, 2000

