
Concurrent Assignment Statements

1. Simple Assignment

signal_name <= expression

e.g.

SIGNAL x1, x2, x3, f : STD_LOGIC;
SIGNAL X, Y, S : STD_LOGIC_VECTOR(1 TO 3);

f <= (x1 OR x2) AND x3;

S <= X+Y;

Special Assignment Statement:

SIGNAL S : STD_LOGIC_VECTOR(1 TO 16);

S <= (OTHERS => '0');

2. Selected Signal Assignment

[label:] -- optional label
WITH expression SELECT

signal_name <= expression WHEN constant_value{,
 expression WHEN constant_value};

e.g.
SIGNAL x1, x2, Sel, f : STD_LOGIC;

WITH Sel SELECT
f <= x1 WHEN '0',

 x2 WHEN OTHERS;

All possible values of the select input Sel must be listed
explicitly. In this case, the other possible values of Sel
(1, Z, -, etc.) are taken care of by using OTHERS.

3. Conditional Signal Assignment

[label:]
signal_name <= expression WHEN logic_expression ELSE

 {expression WHEN logic_expression ELSE}
 expression;

e.g.
SIGNAL x1, x2, f ,in1, in2, in3 : STD_LOGIC;
SIGNAL g : STD_LOGIC_VECTOR(1 DOWNTO 0);

f <= '1' WHEN x1 = x2 ELSE '0';

g <= "01" WHEN in1 = '1' ELSE
 "10" WHEN in2 = '1' ELSE
 "11" WHEN in3 = '1' ELSE
 "00";

These assignments
are ordered according
to priorities of in1, in2
and in3. An assignment
is executed only when the
preceding one fails to
execute.

4. GENERATE Statement

generate_label:
FOR index_variable IN range GENERATE

statements;
{statements;}

END GENERATE;

generate_label:
IF expression GENERATE

statements;
{statements;}

END GENERATE;

Note:
The index_variable does not have
to be declared explicitly; it is a local
variable whose scope is limited to
the FOR-GENERATE loop.

e.g. An n-bit ripple carry adder

ENTITY addern IS
GENERIC (n : INTEGER := 4);
PORT (Cin : IN STD_LOGIC;

 X,Y : IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);
 S : OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0);
 Cout : OUT STD_LOGIC);

END addern;

ARCHITECTURE Structure OF addern IS
SIGNAL C : STD_LOGIC_VECTOR(0 TO n);

BEGIN
C(0) <= Cin;
generate_n_fulladders:
FOR i IN 0 to n-1 GENERATE

stages: fulladd PORT MAP(C(i), X(i), Y(i), C(i+1));
END GENERATE;
Cout <= C(n);

END Structure;

Sequential Assignment Statements

In this type of assignments, the order in which the assignment statements
appear may affect the meaning of the code.
Sequential assignment statements must be placed inside a PROCESS
statement.
We'll consider two kinds of sequential assignment statements:
IF-THEN-ELSE statements and CASE statements.
[process_label:]
PROCESS [(input_signal_name {, input_signal_name})]

[variable declarations]
BEGIN

:
[IF-THEN-ELSE Statements]
[CASE Statements]

:
END PROCESS [process_label]

A process statement has a parenthesized list of signals, called the
sensitivity list which includes all input signals used inside the process.

When there is a change in the value of any signal in a process' sensitivity
list, then the process becomes active.

Once a process is active, the statements inside the process are evaluated
in sequential order. However, any assignments made to signals are hidden
from outside the process until ALL the statements in the process have been
evaluated.

If there are multiple assignments to the same signal in the process, then
only the last assignment will be visible.

1. IF-THEN-ELSE Statement

IF expression THEN
statement;
{statement;}

ELSIF expression THEN
statement;
{statement;}

ELSE
statement;
{statement;}

END IF;

e.g.

PROCESS (Sel, x1, x2)
BEGIN

IF Sel ='0' THEN
f <= x1;

ELSE
f <= x2;

END IF;
END PROCESS;

2. CASE Statement

CASE expression IS
WHEN constant_value =>

statement;
{statement;}

{WHEN constant_value =>
statement;
{statement;}}

WHEN OTHERS =>
statement;
{statement;}

END CASE;

e.g. Assume x1, x2 and Sel are
 STD_LOGIC signals:

PROCESS (Sel, x1, x2)
BEGIN

CASE Sel IS
WHEN '0' =>

f <= x1;
WHEN '1' =>

f <= x2;
WHEN OTHERS =>

f <= 'Z';
END CASE;

END PROCESS;

Note:
A CASE statement must include
a WHEN clause for all possible
valuation of the selection signal.

