
Ryerson University

Department of Electrical & Computer Engineering

ELE328 — Digital Systems

F2004 Final Examination

Name: ID No.: Section:

Time Limit: 2 hour and 50 minutes Professors: Chen, Y.C., Mekhiel, N., Sedaghat, R.

• Closed-book examination, no calculator or any other aids allowed.

• Answer all questions in the space provided and show all steps for full credit.

• Circle the name of your Professor shown above.

1. The state table of a finite-state machine (FSM) with one input w and 2 outputs z1 and z0 is given below:

Present State Next State Outputs
w = 0 w = 1 z1 z0

S0 S2 S1 0 0
S1 S2 S1 0 1
S2 S2 S3 1 0
S3 S1 S3 0 0

(a) (1 mark) Explain whether the given FSM is a Moore-type or Mealy-type state machine?

(b) (9 marks) The given FSM is to be implemented as a synchronous sequential circuit with T flip-flops
using the state assignments: S0=00, S1=01, S2=10, S3=11. Derive the equations for the inputs to the
T flip-flops, and the equations for the outputs z1 and z0.

2

(cont’d)

3

2. Consider the following circuit which implements a finite-state machine (FSM):

Z

D0

D1

X

Clock

Q0

/Q0

Q1

/Q1

(a) (4 marks) Derive the state assigned table for the FSM.

4

(b) (4 marks) Complete the following timing diagram for the circuit by assuming Q1 = Q0 = 0 at the
beginning.

Z

Q1

Q0

X

Clock

(c) (4 marks) Derive the state assigned table if JK flip-flops (instead of D flip-flips) are to be used to
implement the FSM.

5

3. (10 marks) The circuit below is used as a part of an ALU to perform logical and arithmetic operations on
the 2-bit inputs X = X1X0 and Y = Y1Y0. The operation to be performed is determined by the function
select input S1S0 to produce the output F = F1F0 according to the following table:

S1S0 Operations
00 F = X AND Y
01 F = X OR Y
10 F = X XOR Y
11 F = X + Y

(addition)

Complete the implementation of the circuit shown below according to the given requirements:

Y0

Cin
Cout

Y1

F0

F1

I0

I1

I2

I3

I3

I2

I1

I0

MUX

MUX

X0X1
S0S1

S0S1

6

4. Consider the following VHDL code:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY fsm IS

PORT(Clock,Resetn,w : IN STD_LOGIC;

Z : OUT STD_LOGIC);

END fsm;

ARCHITECTURE Behavior OF fsm IS

TYPE State_type IS (A,B,C);

SIGNAL y: State_type;

BEGIN

PROCESS(Resetn, Clock)

BEGIN

IF Resetn = ’0’ THEN

y<=A;

ELSEIF (Clock’EVENT AND Clock = ’1’) THEN

CASE y IS

WHEN A =>

IF w=’0’ THEN

y<=A;

ELSE

y<=B;

END IF;

WHEN B =>

IF w=’0’ THEN

y<=A;

ELSE

y<=C;

END IF;

WHEN C =>

IF w=’0’ THEN

y<=A;

ELSE

y<=C;

END IF;

END CASE;

ENDIF;

END PROCESS;

z<= ’1’ WHEN y=C ELSE ’0’;

END Behavior;

(a) (3 marks) Describe the behavior of the given FSM using a state diagram.

7

(b) Assume that an 8x4-bit EPROM is available, provide a programmable implementation of the FSM in
Part (a):

i. (4 marks) Fill in the contents of the EPROM in the table below by setting up the addresses of
the EPROM as follow: a2 = w, a1a0 = y1y0 (present state), and explain what the contents of the
EPROM represents.

Address Contents
a2a1a0 d3d2d1d0

ii. (3 marks) Draw a schematic diagram for the implementation.

8

5. (10 marks) Two comparators for 4-bit unsigned numbers are available. Each comparator has two 4-bit
inputs: X = x3x2x1x0 and Y = y3y2y1y0, and 3 logical outputs: X greater than Y (>), X equal to Y (=),
and X less than Y (<). Construct a comparator for two 8-bit unsigned numbers A = a7a6a5a4a3a2a1a0 and
B = b7b6b5b4b3b2b1b0 using the two 4-bit comparators and any additional logic gates, and draw the resulting
circuit.

9

6. This question deals with the programmable processor module used in Lab 7. The function table of the 74181
ALU, and the instruction set of the processor are given in the Appendix.

(a) (5 marks) Determine the contents of the Program Counter (PC), Accumulator (ACCA), and the Carry
Bit (C) after the execution of each of the following instructions using the given initial values of the
Input Switches (Sw), Carry Bit (C), Program Counter (PC), Accumulator (ACCA) and content of the
Memory Location 2 (M(2)).

Each of the following instructions has initial conditions as given:

PC = 0010

CACCAPC

Sw = 1011 M(2) = 1010

C = 1

CACCAPC

C = 1

CACCAPC

M(2) = 1010

PC = 0010

CACCAPC

Sw = 1011 M(2) = 1010

C = 0 PC = 0010

CACCAPC

(v) SUBA 2

Sw = 1100 M(2) = 0101

(iii) JEQ 0011

PC = 1100

PC = 1010

C = 0

Sw = 1000

(i) ADDA S

(ii) ROLA

Sw = 0110

M(2) = 0111

ACCA=0110

ACCA=0101

ACCA=0110

ACCA=0110

(iv) INCA

C = 0 ACCA=1111

10

(b) (2 marks) Fill in the microcode table for the following instructions:

161

S3 S2

DATA PATH

MS0S1NCC

ALU 181ACCAPAL

EPROM2

A3

EPROMs 1&2 Address Lines

EPROM3

N0JP OP Code Mic Code

A7 A6 A5 A4 A1 A0

EPROM1

0

S0

D1

S1

0 0

1

11

1

0

0
SUBA S

STAA N

0 0

1

11

1

0

EPROMs

D0

/PE CNT/AS WR SM A1+ A0+

D7 D6 D5 D4 D3 D2 D7 D6 D5 D4 D3 D2 D1 D0A2

(c) (4 marks) Suppose that the STSW N instruction is required to be changed to a new instruction STEZ
N. The new instruction STEZ N is used to compare the contents of the accumulator (ACCA) to the
data from the Input Switches (Sw). If they are equal, a value of zero will be stored in the memory
location N; otherwise, the next program instruction following the STEZ N instruction will be executed.
Fill in the microcode for the STEZ N instruction in the following table:

EPROMs 1&2 Address Lines

EPROM3

N0JP OP Code Mic Code

A7 A6 A5 A4 A3 A1 A0

EPROM1 EPROM2

PAL ACCA ALU 181

NCC S1 S0 M S3 S2

DATA PATH 161 EPROMs

/PE CNT/AS WR SM A1+ A0+

D7 D6 D5 D4 D3 D2 D7 D6 D5 D4 D3 D2 D1 D0A2 D0

S0

D1

S1

0

0

0

0

0

0

0

0 0 0

1

11

1

0

0

1

1 0

0

0

0 0 0

1

11

1

0

01

1

STEZ N

STEZ N

(d) (3 marks) Write a program (not to exceed 16 instructions) to swap the data that are already stored at
memory locations 2 and 3. You may use other memory locations as temporary storage.

11

Appendix

0 0 Hold
0 1 Shift Right
1 0 Shift Left

74161 (PC) Mode Selection

/PE CNT Mode

 0 x Load
 1 1 Count
 1 0 No Change

74194 (ACCA) Mode Selection

1 1 Load

S1 S0 Mode

U7

LEDs
4

EPROM3

.
A3

A0
.. ..

D7

D4
U10

PA 3−0

PA 3−0

CEP

D

QA

QD

CLR CLK

..N 3−0

PE

A
74161

CLR CLK

/PE

CNT

CET

D4

.

.

..

.

M

S 3−0

..

..

D0

D2

A12

A12

.

N 3−0

O 3−0

/WE

A0

EPROM2

.

D0

D3

D5

D6

D7

A0

EPROM1

.

..

/CALU

4.7K

+

LEDs
SRAM

4

..

.
4

.

.

Data Path Unit

M

S 3−0

F 3−0

SM

WE

CS

A0

A9

1K x 4

4 4

4

4

4

4

ALU 181

4

4

SM

/WE

S 3−0 U3B

U4

CLK

4

ACCA 74194

Q3 Q0

Cx

Q0

Q3

O 3−0

CLK

/Co

A7U9

U3A

A3

A4

6

S1

S0

S1

S0

D3−0

Q3−0

SIL/R

N 3−0

SW 3−0

B 3−0A 3−0

U1

U2

A2

NCC

Control Unit

To ALU

To ACCA

I1

I6−3

I2

I7

I8

I9

I10

I11

I12

PAL 16L8

I13

1

and A=B & Carry Flip−flops

Program Counter

NCC

AEBD

+
S0 S1

D QD

C QC AEBDAEB

/CALU

N0

N0

Microinstruction "Next State" Register,

2

A 12 − 6

A4

A5

SW4
SW5

7

C+ C

C+
{CN}

Cx

C

CN = O3*/O2*/O1*/O0*N0 + O3*/O2*O1*/O0*(N0*Q3+/N0*Q0) + /O3*/O2*/O1*C0 + /O3*O2*O1*/O0*C0 + NCC*C

CALU = O3*/O2*/O1*O0*N0 + /O3*/O2*/O1*C + /O3*O2*O1*/O0*C

A7 = O3*O2*/O1*/O0*C + O3*O2*/O1*O0*AEBD + O3*O2*O1*/O0*Q3

19

6−3

7

8

9

11

13

14

O3

O4

O5

O2

O1

16

17

15

12

18

WR

A8

5

U5
S0

S1

U6

D1
D 1−0

CNT

D3

D6

SMD4

WRD5

/AS

5

A1

A1

A 1−0

A 1−0

O 3−0
A5

A2

A5
O 3−0

A6

A6

A7A7

A7A7

A8

.

Switches or Memory

Load PC (JUMP)

Increment PC

"Next State"

No Change − Carry

ACCA Control

OP Code

Operand

ALU Function

Address
Instruction

JUMP Address

PAL

Program Storage

Micro Instructions

N 0

Write to Memory

.

CLRSW7

CLKCLR

CLR CLK

A QA

B QB194
D 1−0 A 1−0

U8

From Pulser

Accumulator Select

D0

Tristate Bus

D3
..

/PE

Co

A=BM

Cin

AEB

/Co

/AS

Tristate Bus
Driver

1/2 241

Driver

1/2 241

I/O

Figure 1: Processor in Lab 7

S
3

S S S
1 02 functions

Logic

M = 1

Arithmetic operations

M = 0

(no carry)

/Cn = 1 /Cn = 0

(with carry)

0 0

0 0

0 0

0 0

0

1

1

0 0

0

1

1

1

0

1

1

0

1

0 0

0

1

1

1

1

0

1

1

0

1

0 0

0 0

0 1

0 1

0 1

1 0

1 0

1 0

1 0

1 1

1 1

1 1

1 1

0 1

F = /A

F = /(A + B)

F = /A*B

F = 0

F = /(A*B)

F = /B

F = A*/B

F = /A + B

F = B

F = A*B

F = 1

F = A + /B

F = A + B

F = A

F = A

F = A + B

F = A + /B

F = minus 1 (2’s comp)

F = A plus A*/B

F = (A + B) plus A*/B

F = A minus B minus 1

F = A * /B minus 1

F = A plus A*B

F = A plus B

F = A*B minus 1

F = A plus A

F = (A + B) plus A

F = (A + /B) plus A

F = A minus 1

F = (A + B) plus 1

F = (A + /B) plus 1

F = 0

F = A plus A*/B plus 1

F = (A +B) plus A*/B plus 1

F = A minus B

F = A * /B

F = A plus A*B plus 1

F = A plus B plus 1

F = (A + /B) plus A*B F = (A+/B) plus A*B plus 1

F = A*B

F = A plus A plus 1

F = (A + B) plus A plus 1

F = (A + /B) plus A plus 1

F = A

F = A plus 1

0 10

Arithmetic and logic functions performed by the 74181 ALU

F = A XOR B

F = /(A XOR B)

Figure 2: ALU Function Table

12

Processor Instruction Set

• 0 0 0 0 N3N2N1N0, ADDA N : ACCA := ACCA + (N) + C.

• 0 0 0 1 N3N2N1N0, SUBA N : ACCA := ACCA - (N) - /C. Note: /C = Borrow Bit

• 0 0 1 0 X X X X, INPA : load accumulator with input data from the switches, ACCA := Sw

• 0 0 1 1 N3N2N1N0, LDAA N : load accumulator with the contents of memory location N.

• 0 1 0 0 N3N2N1N0, STAA N : store ACCA into memory location N.

• 0 1 0 1 N3N2N1N0, JMP N : jump to program address N.

• 0 1 1 0 X X X 0, ADDA S : ACCA := ACCA + Sw + C.

• 0 1 1 0 X X X 1, SUBA S : ACCA := ACCA - Sw - /C.

• 0 1 1 1 N3N2N1N0, ANDA N : AND the contents of N with ACCA and store in ACCA.

• 1 0 0 0 X X X 0, CLC : clear carry bit (C = 0).

• 1 0 0 0 X X X 1, SEC : set carry bit (C = 1).

• 1 0 0 1 X X X 0, DECA : decrement ACCA.

• 1 0 0 1 X X X 1, INCA : increment ACCA.

• 1 0 1 0 X X X 0, RORA : rotate ACCA right (Q3 := C and C := Q0). (Note: In your circuit Q3 is
on the left whereas in the 74194 specs, Q3 is considered to be the rightmost bit).

• 1 0 1 0 X X X 1, ROLA : rotate ACCA left (Q0 := C and C := Q3).

• 1 0 1 1 N3N2N1N0, STSW N : (N) := Sw.

• 1 1 0 0 N3N2N1N0, JCS N : jump to program address N if carry set.

• 1 1 0 1 N3N2N1N0, JEQ N: jump to program address N if A = B.

Note: ALU must be in subtract mode and CALU clear (borrow = 1) to make F = 1111 (AEB HIGH)
when A = B. For these instructions, A = ACCA and B = switches (input).

• 1 1 1 0 N3N2N1N0, JMI N : jump to program address N if ACCA -ve (Q3 = 1).

• 1 1 1 1 X X X 0, CLRA : ACCA := 0000.

• 1 1 1 1 X X X 1, SETA : ACCA := 1111.

