
Toronto Metropolitan University

Department of Electrical, Computer and Biomedical Engineering

COE 328 – Digital Systems

Lab 6 - Design of a Simple Central Processing Unit (2 weeks)

Objectives

To design a simple central processing unit (CPU) in a VHDL environment and implement it on an FPGA

board. This includes:

• Designing and building all functions of the arithmetic and logic unit (ALU).

• Functional simulation of the CPU using the Quartus software.

Procedure

Any computer consists of the following components: central processing unit (CPU), memory, and input/out-

put unit (see Fig. 1). The CPU, in turn, comprises an ALU and a control unit. The ALU performs data

processing operations. The control unit ensures the operation of the whole system and controls all of its

units (including the ALU). The CPU fetches instructions form the memory and executes them. The address

of an instruction is supplied by a program counter (PC) that resides in the CPU. In our design, the 3-bit PC

is implemented by a finite state machine (FSM), whereas the memory is simulated by a 3-to-8 decoder. The

decoder outputs a 1-out-of-8 code that is interpreted as an operation code (opcode) of an instruction. The

operands for an operation are supplied by the switches of the Altera board and student ID digits coming

from the FSM that implements the PC. This project focuses on all components of a typical ALU.

Fig. 1: Computer architecture

Part I: Procuring input data

The ALU is to perform a set of arithmetical and logical functions on two 8-bit inputs A and B. These inputs

are produced using the last four digits of your student ID. For instance, if the student ID is 500864395, then

A = 43 and B = 95, which translates to binary A = 0100 0011 and B = 1001 0101.

This inputs A and B are used in Part I and Part II of the lab as 8-bit constants. In part III, in addition to A

and B, the BCD digits of the lab partner’s student ID are used as a 4-bit input variable student_id. For

instance, if the lab partner’s student ID is {d1 d2 d3 d4 d5 d6 d7 d8 d9} = 500435429, the FSM must cycle

trough the states {s0 s1 s2 s3 s4 s5 s6 s7} and display the digits {d2 d3 d4 d5 d6 d7 d8 d9} in a BCD form

synchronously with the rising edge of the clock signal, i.e. student_id = {0, … , 2, 9} = {0000, … , 0010,

1001}. Ensure to report these values at the beginning of your lab session to your TA.

CPU Memory

System Bus

I/O

- 2 -

The general structure of the system is presented in Fig. 2. The digits displayed correspond to the code {r7 r6

r5 r4 r3 r2 r1 r0} = 10011110 in the Reg. 3 (each of the two nibbles is now interpreted as a signed 4-bit number).

Fig. 2: The block diagram of the CPU

Part II: Storage Unit (Register)

The storage units (in this case registers) are utilized to temporary store the input values and then pass them

to the following components in the system. As portrayed in Fig. 2, two 8-bit register units are utilized in

the ALU to store inputs A and B. The register reads the bit values on its input on the rising edge of the

clock signal and passes those bit values to the output port.

Write the VHDL code for a register unit using a sample code in Fig. 3. Thereafter, create a symbol of your

design to be utilized in the final circuit design. Next, import the symbol to the CPU project. Import the same

symbol twice as the system needs one register unit for each respective 8-bit input.

Part III: Control Unit

The Control unit supplies the opcode to the ALU; this opcode defines the operation. This component con-

sists of two sub-components – the FSM and a 3×8 decoder.

Part III (a): Finite State Machine (FSM)

The FSM component of the Control unit defines the pattern of the controller sequence. The student has the

option to utilize the FSM design from one of the previous labs in this section while some modification is

still required. The FSM designed in the previous lab has 8 different states which are cycled through using

the clock signal. The same design is to be implemented in this section.

The FSM takes the clock signal as the input, and produces the 3-bit output current_state. The FSM acts as

an up-counter, cycling through the states 0 to 7 consecutively (modification required for consecutive state

- 3 -

Fig. 3: Code template for implementing a Register Storage Unit

transition - see Fig. 4) and back to state 0, while the eight digits {d2, … , d9} of a student_id are displayed

on a 7- segment display. The current state of the FSM is passed to the decoder unit. Upon completing the

FSM design, create a symbol representing the FSM sub-component which is to be used in the final design.

Fig. 4: A state diagram of a program counter with enable input (FSM)

Part III (b): 4 to 16 Decoder (4x16 Dec)

The decoder receives the current_state signal from the FSM and converts it to the 1-out-of-8 code that is

used as an opcode for the ALU. The ALU will then perform one of the functions enlisted in Table 1.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

entity register IS
 port (A : in std_logic_vector(7 downto 0) ; -- 8-bit A input

 res, clk : in std_logic ;
 Q : out std_logic_vector(7 downto 0)) ; -- 8-bit output

end register;

architecture behavior of register is
begin
 process (res, clk)
 begin
 if reset = ‘1’ then
 Q <= “00000000” ;
 elsif (clk'EVENT AND clk = '1’) then
 Q <= A ;
 end if ;
 end process ;
end behavior ;

- 4 -

A 2×4 decoder has already been designed and utilized in the previous labs. You can import the same design

and extend it to the 3×8 decoder. When the decoder design is completed, create a symbol of the sub-com-

ponent to be utilized in the final circuit design.

Part IV: Description of the ALU core

A part of every CPU is the ALU core where all arithmetic and logical operations are to be implemented. In

this part students are required to implement all functionalities and operations using VHDL syntax compat-

ible with Altera FPGA boards. The ALU core will take two 8-bit data inputs (A and B) and an 8-bit opcode

input from the Control unit. The opcode is the operation-selector signal, deciding the operation that is to be

applied on the inputs A and B. The functions of the ALU core and their corresponding opcodes are listed

in Table 1.

Function # Opcode Function

1 00000001 𝑠𝑢𝑚(𝑨,𝑩)

2 00000010 𝑑𝑖𝑓(𝑨,𝑩)

3 00000100 𝑨̅

4 00001000 𝑨 ∙ 𝑩̅̅ ̅̅ ̅̅

5 00010000 𝑨 + 𝑩̅̅ ̅̅ ̅̅ ̅̅

6 00100000 𝑨 ∙ 𝑩

7 01000000 𝑨⨁𝑩

8 10000000 𝑨 + 𝑩

Table 1: ALU Core Operations for Problem 1

The operations in Table 1 are to be implemented by writing the proper VHDL code for the ALU core. A

code template for the ALU is presented in Fig. 5. The 8-bit output (Result in Reg. 3) is to be displayed on

two 7- segment displays. When the ALU Core design is completed, create a symbol to represent this com-

ponent in the final design.

Part V: Displaying the Output

The ALU core produces an 8-bit output called Result, which is the result of the operations applied on A

and B.

In the simulation phase of the design, the output Result is to be displayed in bit-value format in the wave-

form editor window. In the implementation phase, where the design is programed on the FPGA board, this

output is split into two 4-bit numbers which are to be displayed on two 7-segment displays as signed BCD

numbers. The signs of these numbers are displayed on another two 7-segment displays. If the number is

negative, the middle segment (g-segment) must be turned on; otherwise, all segments are off.

For example, is the Result = 1100 0110, then the 7-segment displays will display the numbers: -4 and +6,

as illustrated in Fig. 6. The sign of a number is controlled by the signal Neg. If the number is negative Neg

= 1 (g-segment “on”), otherwise Neg = 0 (g-segment “off”).

- 5 -

Fig. 5: A code template for the ALU_unit

Fig. 6: Four 7-sgment displays representing the numbers -4 and +6

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.numeric_std.all;

entity ALU_unit is -- ALU unit includes Reg. 3
 port (clk, res : in std_logic ;
 Reg1, Reg2 : in std_logic_vector(7 downto 0); -- 8-bit inputs A & B from Reg. 1 & Reg. 2

 opcode : in std_logic_vector(7 downto 0); -- 8-bit opcode from Decoder
 Result : out std_logic_vector(7 downto 0)); -- 8-bit Result

end ALU_unit ;

architecture calculation of ALU_unit is
begin
 process (clk, res)
 begin
 if reset = ‘1’ then
 Result <= “00000000” ;
 elsif (clk'EVENT AND clk = '1’) then
 case opcode is
 when “00000001” =>
 -- Do addition for Reg1 and Reg2
 when “00000010” =>
 -- Do subtraction for Reg1 and Reg2
 when “00000100” =>
 -- Do inverse
 when “00001000” =>
 -- Do Boolean NAND
 when “00010000” =>
 -- Do Boolean NOR
 when “00100000” =>
 -- Do Boolean AND
 when “01000000” =>
 -- Do Boolean XOR
 when “10000000” =>
 -- Do Boolean OR
 when others =>
 -- Don’t care, do nothing
 end case ;
 end if ;
 end process ;
end calculation ;

- 6 -

Part VI: Final Design

As the designs for different components (Register, ALU Core, FSM and Decoder units) are completed, they

should all be ported to one final circuit design.

1. Open a new schematic design and import all of the required units. When importing is completed,

you should have the following components: two Registers (for inputs A and B), one ALU Core,

one FSM, one Decoder, three pairs of 7-segment displays: one for student_id (unsigned number)

and two for the output Result from the ALU (signed numbers).

2. Create the 8-bit input variables A and B, 8-bit output variable Result, and the single-bit input var-

iable clk.

3. Connect all of the components using single and multi-bit data buses. Follow the schematics por-

trayed in Fig. 7.

4. Name the data buses to represent the proper signals, for e.g. opcode and A.

When your final circuit looks similar to the one in Fig. 7, synthesize and simulate your design. Verify the

functionality of your ALU and present the results to the TA. The waveforms must be included as part of

the final report submission.

Part VIII: Problem Sets

In this section, you should address the following three problems and showcase the results to your TA.

Problem 1: Initial Design

Implement the initial design of the CPU. In this design, the FSM output signal, current_state follows an

up-counting pattern. This signal feeds a decoder that is then connected to the ALU inputs that select the

required function. As the value of the current_state changes, so does the ALU function. The output of the

ALU, Result, represents the result of the current operation (function). The set of available functions is given

in Table 1; the ALU is presented in Fig. 2 (note: in this problem, there are only two data inputs to the ALU,

Reg1 and Reg2; ignore student-id input).

Problem 2: Modified ALU Core 1

In this problem, the student is required to modify the functions of the ALU from Problem 1. The TA will

assign each student one of the following modified functions for the ALU.

a)

Function # Operation / Function

1 Increment A by 2

2 Shift B to right by two bits, input bit = 0 (SHR)

3 Shift A to right by four bits, input bit = 1 (SHR)

4 Find the smaller value of A and B and produce the results (Min(A,B))

5 Rotate A to right by two bits (ROR)

6 Invert the bit-significance order of B

7 Produce the result of XORing A and B

8 Produce the summation of A and B, then decrease it by 4

- 7 -

b)

c)

d)

e)

Function # Operation / Function

1 Swap the lower and upper 4 bits of A

2 Produce the result of ORing A and B

3 Decrement B by 5

4 Invert all bits of A

5 Invert the bit-significance order of A

6 Find the greater value of A and B and produce the results (Max(A,B))

7 Produce the difference between A and B

8 Produce the result of XNORing A and B

Function # Operation / Function

1 Produce the difference between A and B

2 Produce the 2’s complement of B

3 Swap the lower 4 bits of A with lower 4 bits of B

4 Produce null on the output

5 Decrement B by 5

6 Invert the bit-significance order of A

7 Shift B to left by three bits, input bit = 1 (SHL)

8 Increment A by 3

Function # Operation / Function

1 Shift A to right by two bits, input bit = 1 (SHR)

2 Produce the difference of A and B and then increment by 4

3 Find the greater value of A and B and produce the results (Max(A,B))

4 Swap the upper 4 bits of A by the lower 4 bits of B

5 Increment A by 1

6 Produce the result of ANDing A and B

7 Invert the upper four bits of A

8 Rotate B to left by 3 bits (ROL)

Function # Operation / Function

1 Replace the odd bits of A with odd bits of B

2 Produce the result of NANDing A and B

3 Calculate the summation of A and B and decrease it by 5

4 Produce the 2’s complement of B

5 Invert the even bits of B

6 Shift A to left by 2 bits, input bit = 1 (SHL)

7 Produce null on the output

8 Produce 2’s complement of A

- 8 -

f)

g)

h)

Problem 3: Modified ALU Core 2

In this problem, students are assigned the task to utilize the student_id output from the FSM component of

the Control Unit. Use the ALU from the Problem 1, but modify its functions so that it can process 3 data

inputs, Reg1, Reg2 and student-id (as shown in Fig. 2 and Fig. 8). Implement the functionalities described

below which are assigned by your TA. Some modifications to the 7-segment display VHDL code may also

be needed to display “y” or “n” symbols instead of numerical digits. The TA shall assign one of the follow-

ing problems for each student.

Note: the inputs A and B for this problem come from your partner’s student ID, whereas the student-id

digits generated by the FSM must correspond to your student ID. Ensure to report your partner’s student

ID digits to your TA.

Function # Operation / Function

1 Decrement B by 9

2 Swap the lower and upper 4 bits of B

3 Shift A to left by 2 bits, input bit = 0 (SHL)

4 Produce the result of NANDing A and B

5 Find the greater value of A and B and produce the results (Max(A,B))

6 Invert the even bits of B

7 Produce null on the output

8 Replace the upper four bits of B by upper four bits of A

Function # Operation / Function

1 Invert the bit-significance order of A

2 Shift A to left by 4 bits, input bit = 1 (SHL)

3 Invert upper four bits of B

4 Find the smaller value of A and B and produce the results (Min(A,B))

5 Calculate the summation of A and B and increase it by 4

6 Increment A by 3

7 Replace the even bits of A with even bits of B

8 Produce the result of XNORing A and B

Function # Operation / Function

1 Rotate A to right by 4 bits (ROR)

2 Produce the result of XORing A and B

3 Invert the bit-significance order of B

4 Calculate the summation of A and B and decrease it by 2

5 Rotate B to left by 2 bits (ROL)

6 Invert the even bits of B

7 Swap the lower 4 bits of B with lower 4 bits of A

8 Shift B to right by 2 bits, input bit = 0 (SHR)

- 9 -

a) For each opcode submitted to the ALU, display 'y' if the student_id signal value is odd and 'n' otherwise

b) For each opcode submitted to the ALU, display 'y' if the student_id signal value is even and 'n' other-

wise

c) For each opcode submitted to the ALU, display 'y' if the student_id signal has an odd parity and 'n'

otherwise

d) For each opcode submitted to the ALU, display 'y' if the student_id signal has an even parity and 'n'

otherwise

e) For each opcode submitted to the ALU, display 'y' if one of the 2 digits of A is greater than the stu-

dent_id signal value and 'n' otherwise

f) For each opcode submitted to the ALU, display 'y' if one of the 2 digits of A is less than the student_id

signal value and 'n' otherwise

g) For each opcode submitted to the ALU, display 'y' if one of the 2 digits of A is equal to the student_id

signal value and 'n' otherwise

h) For each opcode submitted to the ALU, display 'y' if one of the 2 digits of B is greater than the stu-

dent_id signal value and 'n' otherwise

i) For each opcode submitted to the ALU, display 'y' if one of the 2 digits of B is less than the student_id

signal value and 'n' otherwise

j) For each opcode submitted to the ALU, display 'y' if one of the 2 digits of B is equal to the student_id

signal value and 'n' otherwise

Fig. 7: Typical Block Schematic for Problem 1

- 10 -

Fig. 8: Typical Block Schematic for Problem 3

