
coe318 Lab 1 (2016) Introduction to Netbeans and Java

coe318 Lab 1
Introduction to Netbeans and Java

Week of September 12, 2016

Objectives
• Lean how to use the Netbeans Integrated Development Environment (IDE).

• Learn how to generate and write formatted API documentation.

• Add a constructor, some getter and setter methods and some instance variables to a
template for a class.

• Duration: one week.

Overview
Object-oriented programming creates models of “things” and allows them to be
manipulated through “methods”.

Suppose the “thing” we want to model is a Resistor. Imagine you are given a resistor (say a
50 Ω one). You measure its resistance and, sure enough, its value is 50 Ω. Then you
measure its voltage and current and get zero. Good!

Next you connect it to a 2 Amp current source. The voltage should now measure 100 Volts
and the current (of course) should measure 2 Amps.

In the object-oriented world, obtaining something like a new resistor is done with a
constructor. For example, Resistor r = new Resistor(50) would create a new
Resistor object with a value of 50 Ω by invoking the code for the Resistor's constructor.

“Measuring something” in the object world is accomplished by invoking a “getter”
method; for example, double v = r.getVoltage() would give the resistor's
voltage.

Connecting a resistor to a voltage or current source is done with a “setter” method; for
example, r.setVoltage(100) would effectively connect the resistor to a 100 Volt
source.

In this lab, you are given the skeleton java code for a Resistor. You will have to complete it
by fixing the constructor and getter/setter methods (but this requires very little new code.)
The lab exercise is mainly meant to introduce you to using the Netbeans IDE with a simple
example of object-oriented programming in Java.

Step 1: Create a Netbeans project
1. Start Netbeans.

2. Choose File on the menu bar, then New Project.

3. A New Project window will appear. Click on Java in the Categories column and
Java Class Library in the Projects column. Then click Next.

Page 1 of 6 Version 2016

coe318 Lab 1 (2016) Introduction to Netbeans and Java

4. A New Class Library window will appear. Name the project Lab1. For project
location, click Browse. Create a new folder called coe318 coe318 and then a
subfolder called lab1. Click Finish.

Step 2: Create a java class source code file
1. Choose File on the menu bar, then New File.

2. In the New File window, click on Java as the category and Java Class as the
file type. Click Next.

3. Name the class Resistor.

4. Name the package coe318.lab1

5. Click Finish.

6. An editor window tab named Resistor will appear.

7. Delete everything in it; then copy and paste the following source code into the
editor.

Source code

 You can copy and paste the following source code into your Netbeans editor. To open a
copy in your browser for easier copying/pasting, click here.

/**
 * A Resistor models an ideal resistor that obeys Ohm's Law.
 *
 * @author YourName
 */
package coe318.lab1;

public class Resistor {
 //Instance (state) variables
 //TODO Add instance variables (Hint: you only need 2!)

 /**
 * Create an ideal Resistor. The initial current through and voltage
across
 * the Resistor are zero.
 *
 * @param resistance resistance in Ohms
 */
 public Resistor(double resistance) {
 //Set values of state variables
 }

 /**
 * Returns the value of the resistor in Ohms.
 *
 * @return the resistance
 */
 public double getResistance() {
 //FIX THIS so that it returns the actual resistance
 return 0.0;
 }

Page 2 of 6 Version 2016

http://www.ee.ryerson.ca/~courses/coe318/lab1/Resistor.java

coe318 Lab 1 (2016) Introduction to Netbeans and Java

 /**
 * Returns the voltage across the resistor.
 *
 * @return the voltage
 */
 public double getVoltage() {
 //FIX THIS so that it returns the actual voltage
 return 0.0;
 }

 /**
 * Sets the value of the voltage across the resistor.
 *
 * @param voltage the voltage to set
 */
 public void setVoltage(double voltage) {
 //FIX THIS
 }

 /**
 * Returns the current through the Resistor.
 *
 * @return the current
 */
 public double getCurrent() {
 //FIX THIS
 return 0.0;
 }

 /**
 * Sets the value of the current through the resistor.
 *
 * @param current the current to set
 */
 public void setCurrent(double current) {
 //FIX THIS
 }

 /**
 * Returns the power (in Watts) dissipated by the Resistor.
 *
 * @return the power
 */
 public double getPower() {
 //FIX THIS
 return 0.0;
 }

 /**
 * A simple example of using a Resistor. <p> The output should be:
 * <pre>
 * Creating a 50 Ohm resistor (r1)
 * Its resistance is 50.0 Ohms
 * Its current is 0.0 Amps
 * Its voltage is 0.0 Volts

Page 3 of 6 Version 2016

coe318 Lab 1 (2016) Introduction to Netbeans and Java

 * Its power is 0.0 Watts
 * Creating a 100 Ohm resistor (r2)
 * Its resistance is 100.0 Ohms
 * Setting r1's current to 2 Amps
 * Its current is 2.0 Amps
 * Its voltage is 100.0 Volts
 * Its power is 200.0 Watts
 * Setting r1's voltage to 50 Volts
 * Its current is 1.0 Amps
 * Setting r2's current to 3 Amps
 * Its voltage is 300.0 Volts
 * </pre>
 *
 * @param args (Command line arguments not used.)
 */
 public static void main(String[] args) {
 Resistor r1, r2;
 System.out.println("Creating a 50 Ohm resistor (r1)");
 r1 = new Resistor(50.0);
 System.out.println("Its resistance is "
 + r1.getResistance() + " Ohms");
 System.out.println("Its current is "
 + r1.getCurrent() + " Amps");
 System.out.println("Its voltage is "
 + r1.getVoltage() + " Volts");
 System.out.println("Its power is "
 + r1.getPower() + " Watts");
 System.out.println("Creating a 100 Ohm resistor (r2)");
 r2 = new Resistor(100.0);
 System.out.println("Its resistance is "
 + r2.getResistance() + " Ohms");
 System.out.println("Setting r1's current to 2 Amps");
 r1.setCurrent(2.0);
 System.out.println("Its current is "
 + r1.getCurrent() + " Amps");
 System.out.println("Its voltage is "
 + r1.getVoltage() + " Volts");
 System.out.println("Its power is "
 + r1.getPower() + " Watts");
 System.out.println("Setting r1's voltage to 50 Volts");
 r1.setVoltage(50.0);
 System.out.println("Its current is "
 + r1.getCurrent() + " Amps");
 System.out.println("Setting r2's current to 3 Amps");
 r2.setCurrent(3.0);
 System.out.println("Its voltage is "
 + r2.getVoltage() + " Volts");

 }
}

Step 3: Generate javadocs, compile and run
1. Select Run in the menu bar and then click on Generate javadoc for

Resistor.

Page 4 of 6 Version 2016

coe318 Lab 1 (2016) Introduction to Netbeans and Java

2. Your web browser will start up (or a tab will open) and display the API (Application
Programming Interface) for the Resistor class.

3. Look at the web page and click Resistor, then click on main. The documentation for
"main" tells you what the output of running the program should be.

4. You can also compile and run the class by selecting Run in the menu bar and
clicking on Run Project.

5. Note that although it will run, the program's output is incorrect. For example, it
says that the resistance of a 50 Ohm resistor is 0!

Step 4: Add an instance variable, fix constructor and
getResistance()

1. The getResistance()method you are given is:
public double getResistance() {
 return 0.0;
}

2. You need to have it return the actual value of the Resistor's resistance. This should
be an instance (or state) variable of a Resistor object.

3. You have to declare this instance variable (it should have private visibility and be of
type double.)

4. Of course you also have to choose a name for it. The name should be descriptive of
its meaning. For example, this is a very poor choice (although it would be legal) :

private double guessWhatIam;

1. However, do not use the name resistance. (You will soon learn why; you will
also learn how you can use this name but it requires a little bit more Java
knowledge.)

5. You have to initialize its value in the constructor and use its value in the
getResistance() method. Note that the constructor is declared:
 public Resistor(double resistance) {

6. The value of the Resistor object to be created is given by the resistance
parameter.

7. You simply have to assign this parameter to whatever name you have chosen as the
object's instance variable.

Step 5: Fix remaining methods

Page 5 of 6 Version 2016

coe318 Lab 1 (2016) Introduction to Netbeans and Java

To finish the lab, you need to fix the remaining getter and setter methods
(getVoltage(), setCurrent(double current), etc.) Once this is done, the
output from the program should be correct.

Hint: you will have to add at least one instance variable; however, you do not need to add
an instance variable for each value that has a “getter” method. In particular, if the
resistance is known along with any one of the resistor's voltage, current or power, the other
two can be calculated using Ohm's Law. The calculation would be performed in a “getter”
method.

Step 6: Submit your lab

You must submit your lab electronically at least 24 hours prior to the start of your
scheduled lab period for Lab 2.

If you did the lab on a Departmental computer, you can do the following:

cd coe318
zip -r lab1.zip lab1
submit coe318 lab1 lab1.zip
cd coe318
zip -r lab1.zip lab1
submit coe318 lab1 lab1.zip

If you did the lab on your own computer, zip the lab1 folder (remember to do this
recursively so that all sub-folders are included), then transfer the zip file to a Departmental
machine, logon to a Departmental machine which can be done remotely) and type in the
submit command:

submit coe318 lab1 lab1.zip
submit coe318 lab1 lab1.zip

Page 6 of 6 Version 2016

	Objectives
	Overview
	Step 1: Create a Netbeans project
	Step 2: Create a java class source code file
	Source code

	Step 3: Generate javadocs, compile and run
	Step 4: Add an instance variable, fix constructor and getResistance()
	Step 5: Fix remaining methods
	Step 6: Submit your lab

