

BME328 LAB7

Simple Processor

 35 Marks

(2 weeks) Due Date: Week 12

Objective:

 -Design and implementation of simple 8 bit microprocessor

 -The processor consists of ALU, Registers to store data, Control unit to execute
instructions pointed to by PC

Organization:

1-8 bit Input data is entered through switches SW7..SW0 and stored in register R1
when instruction LD-R1 is executed

2- 8 bit ALU perform operation on input A and input B based on OP code of executed
instruction

3-ALU input A is connected to R1 , input B is connected to Accumulator AC .

4-Results of each operation is displayed on two 7 Seg display unit connected to output
of AC

5-RC register stores data from input switches SW7..SW0 when LD-RC instruction is
executed and RC output is used as a conditional register for control flow

6-PC is a counter that is used to point to next instruction to be executed and starts
from Instruction 0 to Instruction N. Each clock cycle it increment PC to point to next
instruction

7-Combinational circuit stores the Instructions starting from address 0 to address N.
Each instruction has its op code to be used by ALU.

SIMPLE PROCESSOR Organization

Part1: Instruction Set

1-Register Transfer Op Code

LD-R1: Load R1 from input; R1=INPUT 0

LD-RC: Load RC from input; RC= INPUT 1

2-Arithmetic Operations:

ADDA: Add R1 to Acc; Acc= Acc + R1 2

SUBA: Sub R1 from Acc; Acc= ACC-R1 3

INCA: Increment Acc; Acc=Acc + 1 4

DECA: Dec Acc; Acc= Acc -1 5

DEC-RC: Dec RC; RC= RC-1 6

3-Logic Operations

ANDA: And Acc with R1; Acc=Acc&R1 7

ORA: Or Acc with R1; Acc = Acc | R1 8

XORA: XOR Acc with R1; Acc XOR R1 9

NAND: Invert Acc; Acc = Acc NAND R1 A

SLA: Shift Left Acc; Acc=Acc*2 B

SRA: Shift Right Acc; Acc = Acc/2 C

4-Control flow

BNEQZ: branch to start if RC !=0; goto state D

Part2: Implementation of Control Unit and Instructions

Using FSM to implement PC, Instruction Memory as combinational circuit

PC starts from S0 on Reset= active

On S0, first instruction will be executed so if first instruction to load a number in

R1, then opcode=1, if need to clear Acc, Load R1=0, then use And instruction so

next state op code is 8,..

Example:

Average of 4 numbers entered from input x1, x2, x3, x4

LDR1 0; R1 =0

ANDA; Acc=0

LDR1 X1; R1=X1

ADD ; Acc=X1

LDR1 X2; R1=X2

ADD; Acc= X1+X2

LDR1 X3; R1=X3

ADD ; Acc=X1+X2+X3

LDR1 X4; R1=X4

ADD; ACC=X1+X2+X3+X4

SR;

SR; Acc= (X1+X2+X3+X4)/4

Implementation of FSM for PC and Instructions

 Example2:

Executing Loops

for(i=5; i<=0; i--){result=result + x}

 LDRC 5,

 LDR1 0

 ANDA

 LDR1 X

LOOP: ADD

 DECRC

 BNEQZ LOOP

VHDL FOR ALU

Port (

 A, B : in STD_LOGIC_VECTOR(7 downto 0); -- 2 inputs 8-bit

 ALU_Opcode : in STD_LOGIC_VECTOR(3 downto 0); -- 1 input

4-bit for selecting function

 ALU_Out : out STD_LOGIC_VECTOR(7 downto 0); -- 1 output

8-bit

 Carryout : out std_logic -- Carryout flag

);

end ALU;

architecture Behavioral of ALU is

signal ALU_Result : std_logic_vector (7 downto 0);

signal tmp: std_logic_vector (8 downto 0);

begin

 process(A,B,ALU_Opcode)

 begin

 case(ALU_ Opcode) is

 when "0010" => --ADD

 ALU_Result <= A + B ;

 when "0011" => -- Subtraction

 ALU_Result <= A - B ;

 when "0100" => --INCA

 ALU_Result <= A + 1 ;

 when "0101" => -- DECA

 ALU_Result <= A - 1;

 when "0111" => -- Logical and

 ALU_Result <= A and B;

 when "1000" => -- Logical or

 ALU_Result <= A or B;

 when "1001" => -- Logical xor

 ALU_Result <= A xor B;

 when "1010" => -- Logical nand

 ALU_Result <= A nand B;

 when "1011" => -- Logical shift left

 ALU_Result <= std_logic_vector(unsigned(A) sll 1);

 when "1100" => -- Logical shift right

 ALU_Result <= std_logic_vector(unsigned(A) srl 1);

 end case;

 end process;

 ALU_Out <= ALU_Result; -- ALU out

 tmp <= ('0' & A) + ('0' & B);

 Carryout <= tmp(8); -- Carryout flag

end Behavioral;

