
1 | P a g e

BME 328 LAB5

Lab 5 - VHDL for Combinational Circuits and Storage Elements

15 Marks (1 week)

Due Date: Week 9

1 Objectives
To construct combinational circuits and circuits with basic storage elements using VHDL

2 Pre-Lab Preparation
1. Start-up Quartus II. This window gives you access to an integrated suite of CAD tools
2. To save files for this lab, create subdirectories mux, decode, encod, and johns in your work

directory.
3. Enter the name of the first project, mux, by clicking on File then Project on the pull down menu and

then Name on the subsequent pull down menu. Type the Project Name, and click OK.
4. Open Text Editor and type the VHDL file from Figure 6.28 of the textbook. Save the file as

mux.vhd.

5. Start the compiler. Fix any errors and re-compile. Once the file compiles without errors, go to the

next step. Copy the file mux.vhd to a usb drive

6. Repeat steps 3-5 for the remaining examples. Use files from the following figures accordingly (see

textbook):
i. decod – Figure 6.30

ii. encod – Figure 6.41

iii. johns – Figure 2 (In this Manual)

7. The last example shows one of the ways of implementing the Johnson counter. The last six digits

of the student identification number must be represented by a four-bit vector variable

STUDENT_ID which will be displayed cyclically in sequence with Johnson counter output. Qreg

is an internal signal which can be fed back to the D's or fed out to Q.
8. Prepare a Truth Table for Johnson Counter for 6 clock cycles.

3 Laboratory Work

1. Create the subdirectory lab4 in your work directory, and copy the all the subdirectories created as part

of pre-lab to this subdirectory.

2. Compile your designs and create symbols for respective projects (mux, decode, encod, and johns)

and save them.
3. Create new subdirectories inside lab4 folder of your working directory with names

muxModified and decodModified.

4. Start-up Quartus II. This window gives you access to an integrated suite of CAD tools

2 | P a g e

5. Enter the name of the project, muxModified, by clicking on File then Project on the pull down menu and

then Name on the subsequent pull down menu. Type the Project Name at top, and click OK.
6. Create a block schematic file muxModified.bdf for the project defined in (12) and implement a

4:1 multiplexer using two 2:1 multiplexer (mux symbols) as shown in Figure 6.3 of the text book.

7. Repeat the steps 11-13 for the project decodModified and implement a 3:8 decoder using two

2:4 decoders (decode symbols) as outlined in Figure 6.17 of the text book.
8. Assign all Input (Output) signals to any dedicated Input (Output) pins of the Cyclone- II

EP2C35F672C6 FPGA on the prototype board (see Pin Assignment Tables in Lab3). Re-

compile your design.
NOTE:

(a) All the output LEDs are active HIGH. (NOTE: This means high logic level will turn the

LED's on).

(b) All the 7-segment displays are active LOW (NOTE: This means low logic level will turn

the 7-segment on).
(c) The resetn signal must be assigned to the push button switch (PIN_G6) of the Cyclone- II

EP2C35F672C6. There are four red buttons on the prototype board. The pin 1 is connected to

the first button starting from the top.

(d) The clk signal must be assigned to the Global Clock Input (pin 2) of the Cyclone- II

EP2C35F672C6 FPGA.
9. Implement/program all your designs into the Cyclone® II 2C35 FPGA.

NOTE: before programming double-check pin assignments. Incorrect pin assignment can result

in failure of the Cyclone- II EP2C35F672C6 FPGA.

10. Every digit of last 6 digits of Student ID should be displayed on the seven-segment display while the

current state of the johns is displayed on green LED’s.

11. Design your circuits as outlined and demonstrate results to the instructor by displaying both the states

and student identifier utilizing the displays of your prototype board.

NOTE: Re-use the 7-segment module from Lab3 to display states and student identifier digits.

12. The circuit design must handle non-valid states and non-valid student identifier cases by displaying

an “E” in the seven segment display.

13. Consider the last 6 digits of the student identifier D = {d1, d2, d3, d4, d5, d6} in its general

representation. Then, as an example, a student with identifier: 500435429 will follow the display

sequence as 435429.

Figure 1: Johnson Counter (Note feedback Connection)

3 | P a g e

LIBRARY ieee;

USE ieee .std_logic_1164.all;
ENTITY johns IS

PORT (Clrn, E, Clkn : IN STD_LOGIC; --clrn is your reset button

STUDENT_ID : out std_logic_vector(3 downto 0);
Q : OUT STD_LOGIC_VECTOR (0 TO 2));

END johns;

ARCHITECTURE Behavior OF johns IS

signal Qreg : STD_LOGIC_VECTOR (0 TO 2);
BEGIN

PROCESS (Clrn, Clkn)

BEGIN
IF Clrn = '0' THEN

Qreg <= "000";

ELSIF (Clkn'EVENT AND Clkn = '0') THEN
IF E = '1' THEN

.. -- complete your johns flip-flop outputs here..

..

Qreg(1) <= Qreg(0);

..

ELSE
..

Qreg <= Qreg;

END IF;
END IF;

-- STUDENT_ID variable represents the last 6 digits of your student ID
hence d4 is the fourth digit of your

--student ID in four bits, d5 is the fifth and so on. For example, for

Student ID 500435429,

 --d4 is 0100, d5 is 0011 and so on

 CASE Qreg IS

 WHEN "000" =>
<= --d1 STUDENT_ID

 WHEN "100" =>
<= --d2 STUDENT_ID

 . --d3

 . --d4

 . --d5

WHEN OTHERS =>
--d6

 STUDENT_ID <= "----";--error

 END CASE;

Q <=

END PROCESS;

Qreg;

END Behavior;

Figure 2: Code Template for Johnson Counter to sequence STUDENT ID

4 | P a g e

Figure 3: Typical Schematic produced using Quartus II

