BME328 Lab 1

Timer-Counter-7 Seg Display Project

Due week 3 (15 marks)

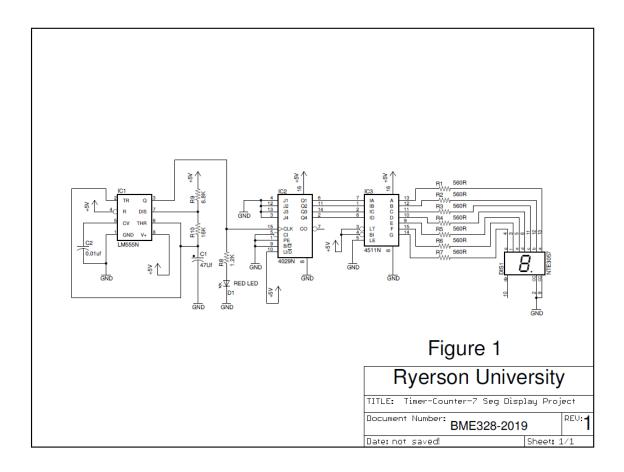
Objectives

	To work with standard "off-the-shelve" integrated circuits (ICs).	
	To get familiar with bread-boarding and wiring digital circuits.	
	To implement simple digital circuits using standard ICs.	
	To learn to read schematic diagrams.	
Laboratory Pre Lab Instructions		
	You need to bring your own breadboard and the bag of discrete components. These items can be purchased from Eng418. Contact Mr. Jim Koch Email jkoch@ee.ryerson.ca	
	Study and understand the 555 Timer, Up/Down counter with 7-segment display schematic diagram shown in Figure 1.	

The 555 Timer produces a square wave (pulse) for the counter to count. Calculate the output frequency as function of RA, RB and Capacitance using 555 Data sheet.

The MC14029B is a 4-bit binary/decade up/down counter consisting of D-type flip-flops with a gating structure to provide toggle flip-flop capability. The counter can be used in either Binary or BCD operation. It also can be used either as a Down-counter (when you

connect pin 10 to ground) or as an Up-counter (when you connect pin 10 to 5V) as shown in Figure 1.


The MC14511B is a BCD-to-seven segment decoder that also has an output drive capability for driving LEDs. It converts a 4-bit binary coded decimal value to drive the appropriate LEDs on the 7-segment display.

Detail logic diagrams of the <u>MC14029B</u> (Binary/Decade Up/Down counter) and <u>MC14511B</u> (BCD-to-Seven segment Latch/Decoder/Driver).

Lab Instructions

Construct the Circuit of the schematic diagram shown in Figure 1 on your breadboard.
You may need this circuit in a future lab, so do not disconnect it when you are done.
Using Scope measure the output frequency from 555 timer Q pin3.
Using scope probe measure and draw waveforms on outputs QA, QB, QC, QD of 4029 Counter.
Using scope probe find the values of ABCDEFG for 4511 when it displays 0 to 9.
Change the value of RA and measure the frequency.
Change the counter connection to count down.

REFERENCE: http://faculty.ucr.edu/~vladimf/ee120a/Lab_1.pdf

