Ryerson University Department of Electrical and Computer Engineering COE 328 – Digital Systems and Microprocessors

Midterm Test		October 27, 2008	
Name:	Student Number:	Section:	
Time limit: 1 hour 50 min		Examiners: R. Sedaghat, N. Mekhiel	
Notes:			
 a) Closed book. b) No calculators. c) Answer all questions in the sp d) Circle your professor's name a 	-		

1. Implement function $F = (\overline{x_1 \oplus x_3}) \overline{x_2} + (x_1 \oplus x_3) x_2$ using minimum number of multiplexers. Use 4-to-1

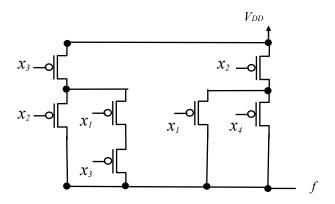
(8 marks)

and 2-to-1multiplexer. The inputs can be connected to either 1 or 0, or to any logic signal.

Name:	Section:

2. (10 marks)

a) Implement the following logic function using NAND gates only (Do not simplify)


$$F(x_1, x_2, x_3, x_4) = \sum m(0, 2, 5, 7, 8, 10)$$

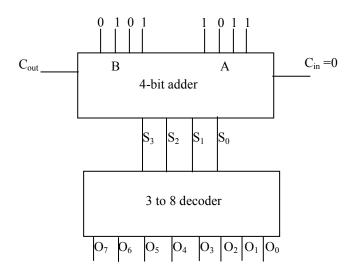
b) Simplify the above function

c) Find the complement of the optimized function using DeMorgan theorem

a) Find the logic equation for the function f implemented in CMOS. Its PMOS circuit is shown below.

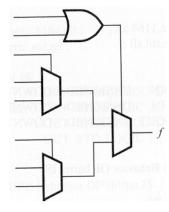
(8 marks)

b) Simplify the above function


c) Implement the optimized function using CMOS

4. Given the binary 8 bit number 11101001, find the following:

(8 marks)


- a) The decimal value if the 8 bit number is an unsigned-number
- **b)** The decimal value if the 8 bit number is signed-magnitude
- c) The decimal value if the 8 bit number is 2's complement

- d) Convert the 8 bit number to a hexadecimal-number
- 5. Find the values of the outputs $(O_7...O_0)$ for the circuit given below assuming A=1011 and B=0101 (5 marks)

6. Construct one -bit adder for two bits X and Y to generate a sum bit S and a Carry bit C using 2-to-1 multiplexers. (5 marks)

7. Show how the function $f = x_3 \overline{x_2} + x_1 x_2 + \overline{x_3} x_2$ can be realized using the following circuit. Derive and write all values for the circuit inputs. The inputs can be connected to either 1 or 0, or to any logic signal. (6 marks)

