
Procedural Texture Mapping on FPGAs

Andy G. Ye and David M. Lewis *

Department of Electrical and Computer Engineering

University of Toronto

{yeandy, lewis}@eecg.utoronto.ca

Abstract

Procedural textures can be effectively used to enhance the
visual realism of computer rendered images. Procedural tex-
tures can provide higher realism for 3-D objects than tradi-
tional hardware texture mapping methods which use mem-
ory to store 2-D texture images. This paper proposes a new
method of hardware texture mapping in which texture im-
ages are synthesized using FPGAs. This method is very
efficient for texture mapping procedural textures of more
than two input variables. By synthesizing these textures on
the fly, the large amount of memory required to store their
multidimensional texture images is eliminated, making tex-
ture mapping of 3-D textures and parameterized textures
feasible in hardware. This paper shows that using FPGAs,
procedural textures can be synthesized at high speed, with
a small hardware cost. Data on the performance and the
hardware cost of synthesizing procedural textures in FP-
GAS are presented. This paper also presents, the FPGA
implementations of two Perlin noise based 3-D procedural
textures.

1 Introduction

In many computer graphic applications, polygon meshes
are used to model geometrical surfaces. Texture mapping
increases the level of surface detail of polygon meshes by
mapping two-dimensional texture images on to the meshes.
In common graphic cards, the 2-D t,exture images are pre-
computed and stored in memory on the cards. Procedural
texture mapping extends the concept of texture mapping
by determining the surface coloring of polygon meshes us-
ing computer algorithms. These procedural texture algo-
rithms typically model the structures of materials like con-
crete, wood and marble. They can be defined in 3-D space
and be parameterized using input variables defining addi-
tional attributes other than the texture coordinates.

Procedural texture mapping has become an important
method of generating visually realistic images in many

*This research was supported by Micron&, Altera Corporation
Cypress Semiconductor, I-Cube, NSERC, and ATI Technologies.

Permission to make digital or hard copies of all or part of this work fol

personal or classroom use is granted without ~CL’ provided that copies

arc not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. ‘1‘0 copy

otherwise. to republish, to post on wwxs or to redistribute to lists.

requires prior specific permission and/or a fee.

FPGA 99 Monterey CA USA
Copyright ACM 1999 I-581 13-088-0/99/02...$5.00

graphic applications. The computation, however, is often
time-consuming. Procedural texture algorithms, when ex-
ecuted in software, often cannot achieve the real time per-
formance demanded by many computer animation applica-
tions. While 2-D textures can be stored in RAM, 3-D tex-
tures require excessive memory. There are no efficient meth-
ods of performing texture mapping using three-dimensional
or parameterized procedural textures using fixed hardware.
The primary reason for this is the variety of procedural tex-
tures, which makes it difficult to design a single, efficient
hardwired implementation for synthesizing all textures.
Other reasons include the complexity of many procedural
texture algorithms, and the ongoing development of new
algorithms. A hardwired accelerator not only would be dif-
ficult to design to support all the exiting procedural texture
algorithms, but also difficult to modify to support new al-
gorithms in the future.

This paper describes a new approach to synthesizing pro-
cedural textures in hardware in which FPGA hardware is
used to provide high performance implementations of pro-
cedural texture algorithms. The primary technique used is
to compile the procedural algorithms into hardware struc-
tures that can be programmed into FPGAs. This approach
is more memory efficient than storing pre-generated textures
in memory, since only the algorithms are stored. The use of
FPGAs also results in the ability to exploit the parallelism
presented in each individual algorithm.

A procedural texture generator was designed using FP-
GAS. It is flexible enough to synthesize a variety of proce-
dural textures in high speed, and is small enough to be im-
plemented on one modern FPGA chip. The procedural tex-
ture generator was implemented using the Transmogrifier-2
(TM-2) rapid prototype system [ll], as a part of a 3-D com-
puter graphic rendering system design. The performance
and hardware cost of synthesizing procedural textures in
FPGAs are estimated using the data collected on the TM-2
system.

2 3-D Rendering System

‘I A 3-D computer graphic rendering system was designed
to evaluate the implementation issues of synthesizing pro-
cedural textures in FPGA hardware. The architecture of
this rendering system is briefly described here. The input
to the rendering system is a list of triangles. Each vertex of
these triangles is specified by two triplets. The first triple,
(2, y, z), specifies the position of the vertex in a 3-D world
space. The second triple, (u, w, w), specifies the position of
the vertex in a 3-D texture space. The rendering system

112

World to Screen Screen to Texture Procedural
Space - Space - Texture --j Frame Buffer

Transformation Transformation Generator

Figure 1: 3-D Rendering System Using Procedural Textures

House Altera

- Keeping x
C

lOK50-3

FPGA

House

4 Keeping -+& Altera
Parallel FPGA

C
lOK50-3

Port

I ICUBE

Figure 2: Experimental Setup

performs four major operations on each triangle. First, the
system transforms the 3-D world coordinates of the vertices
into the 2-D screen coordinates. Second, all pixels inside the
triangle are determined using the 2-D screen coordinates of
the vertices. The texture coordinates of these pixels are then
calculated. Third, the system uses the texture coordinates
to calculate the color of each pixel. Finally the image is
stored in a frame buffer and displayed on a screen.

Figure 1 shows the overall architecture of the rendering
system. It consists of four major components:

1. a world to screen space transformation (WSST) unit

2. a screen to texture space transformation (STST) unit

3. a procedural texture generator

4. a frame buffer

Each component performs one of the operations listed in the
previous paragraph. Conventionally, WSST functions are
usually implemented in software; STST and the frame buffer
are implemented in hardware; and textures are implemented
using a RAM. We propose to implement textures in FPGAs
as a procedural texture generator. A set of textures can
be implemented by loading their algorithms into the FPGA
based procedural texture generator. Although STST and
the frame buffer should ideally be implemented in ASIC, we
also constructed them in FPGAs on our prototype.

The 3-D rendering system is implemented on the TM-2.
As shown in Figure 2, the TM-2 consists of two boards. Each
board contains two Altera lOK50 FPGAs and four banks of
64-bit wide SRAM. The TM-2 system can be connected to

a local area network through a host workstation. Using the
host, any workstation on the network can communicate with
the TM-2.

The resources used in the implementation include one
workstation, all four FPGAs on the TM-2, one bank of TM-
2 SRAM, a VGA card, and a monitor. The workstation
is connected to the TM-2 via the local area network. The
partitioning of the rendering system among all hardware re-
sources is shown in detail in Figure 3. Since there are only
four FPGAs available, the entire rendering system cannot
be implemented on the TM-2 system. The WSST calcu-
lations are performed once per triangle, while other units
perform calculations once per pixel. Therefore, the WSST
unit is implemented on the workstation, as commonly done
in many graphic cards. Two FPGAs are allocated to the
STST unit. One and half FPGAs are allocated for the pro-
cedural texture generator. The frame buffer is implemented
using the remaining resources. It uses one bank of TM-2
SRAM as a double frame buffer. It also controls the VGA
card and the monitor.

All software is written in the C programming language.
All hardware designs are done in the Altera Hardware De-
scription Language (AHDL). The rendering system uses a
screen space resolution of 512 x 512. The texture space res-
olution is 512 x 512 x 512. Colors are eight bits.

3 FPGA Implementations of Procedural Texture Algo-

rithms

Six procedural texture algorithms have been implemented in
FPGAs. Each of these algorithms takes three inputs, u, v,

113

El WSST

Ei STST

E Procedural Texture Gene&or

Cl Display Hardware

VGA Card

Figure 3: Partition of the Hardware Resources

W. These three inputs specify a set of coordinates in a 3-D
texture space. The substances that these textures model can
be classified into two categories, solid and gaseous. Three
textures model the coloring of solids including marble, brick,
and wood. Another three model the coloring of gaseous sub-
stances including fog, fire, and cloud. Despite the difference
in appearances, all six textures are fractal in nature - they
all use the Perlin noise function to create fractal effects. In
software, these algorithms are implemented in IEEE float-
ing point arithmetic. Floating point hardware, however, is
expensive to implement in FPGAs. Fixed point hardware is
used, instead, for minimum precision implementations. Ex-
tensive pipelining is used to maximize the throughput of the
algorithms.

3.1 Fractals and the Perlin Noise Function

This section describes the FPGA implementations of fractals
and the Perlin noise function.

3.1.1 Fractals

In computer graphics, fractal functions are often imple-
mented by summing several versions of a base function at
different scales and frequencies. Figure 4 shows this pro-
cess in one dimension. There are a series of functions at the
left side of the figure. They are derived from the same base
function by varying the frequency and the amplitude. More
formally, if the base function is represented by the equation
y = P(U), then the base function at m times the frequency
can be represented by the equation y = P(m x u). To cre-
ate the fractal function, each version of the base function is
scaled inversely proportional to its frequency; then all ver-
sions are summed together. Therefore, the fractal function
becomes:

y = P(U) + f x P(2 x U) + . . . + A x P(m x u)

For every new version of the base function created, the fre-
quency is usually doubled and the scale factor is usually
halved from the previous version. m is usually set to be
between eight and sixty-four. A 3-D fractal function uses a
base function of three variables, P(u, o, 2~). All input vari-
ables of the 3-D base function are scaled.

Monitor

+=>

v - x 0.500 I
Base Function at 2 times frequency

Foe)
I * /

Base Function

Figure 4: One Dimensional Fractal Function

*2 527 mux

*2

2 mux

V

*2

3 mux

W

mux r-s!?
fractal e *2

Figure 5: Fractal Function Hardware

114

“iijifjiy&;s
1 uint 1 uint+l 1 uint 1 uint+l 1 uint 1 uint+l) uint I uint+l

vint vint vint+l vint+ 1 vint vint vint+ 1 vint+ 1

wint wint wint wint wint+l wint+ 1 wint+ 1 wint+l

random random random random random random random random
number number number number number number number number

J ufracs ufracs ufracs ufracs

Linear Linear Linear Linear
Interpolation Interpolation Interpolation Interpolation

L I I I I
4 4
Linear

Interpolation
I

4 G
Linear

Interpolation

4 G (
I

Figure 6: Perlin Noise Function Hardware

Figure 5 shows the architecture of the fractal function
in detail. In the figure, blocks u, u, w, and fractal are all
registers. The multiplexers and the registers are controlled
by a control unit not shown in the figure. The hardware
is used to implement two fractal functions, turbulence and
fractalsum. These functions are defined by the following
formula:

turbulence = C!_O 2-‘P(2’u, 2’u, 2’zu)

fractalsum = Et /2-‘P(2’u, 2’0,2’w)l

where the function P(u, V, w) represents the Perlin noise
function, the actual 3-D base function used. The hardware
implements the above two equations by scaling and accu-
mulating either the value of the Perlin noise function or the
absolute value of the Perlin noise function into the register
labeled fractal. When the absolute value is used, the result-
ing fractal value is the turbulence. As the name implies,
the turbulence function simulates the turbulence character-
istics found in many fluids and solidified solids [6]. When
the value of the Perlin noise function is directly used, the
resulting function is the fractalsum function, which is of-
ten used to simulate gas formations [6]. In both cases, four
cycles are needed to create one fractal value.

3.1.2 Perlin Noise Function

The Perlin noise function is one of the most computation-
ally efficient base functions. In our applications, we use a
Perlin noise function of three-dimensional space. It can be

implemented using the following equation:

Pfu. v. wj =

where R(zl ,z2,23) is a pseudo random function of its in-
puts; and I(zooo, ~001,. . . , 3~1~~,2~,z~,z~) is an interpola-
tion function in three dimensions. This calculates the func-
tion value on the 8 corners of a grid cell, and performs in-
terpolation based on the associated values of the eight and
the distance between the point in question and each of these
grid points [13].

The original Perlin noise function, as actually proposed
by Ken Perlin, implements the function, R(z~,Q,z~), as
three tables of 256 pre-generated pseudo random numbers
stored in memory and two adders [6]. This method can con-
sume quite large amounts of memory, since multiple copies
of R(q) x2, x3) are needed to fully exploit the parallelism
available. A more efficient hardware method of generating
pseudo random function values using xor tables [15] is used
in this study. This method provides significant saving in
hardware.

The second improvement that we made to the origi-
nal Perlin noise function for hardware implementation is to
the interpolation method, I(XOOO,ZOO~,. . . , xlll,z,,, xv, xw).
The original function uses an computationally expensive
wavelet interpolation method [6]. This method has some su-
perior statistical properties than the ordinary 3-D linear in-
terpolation method; however, it is much more computation-
ally expensive. In this study, we use a smoothing function,
sm(s) = 3x2 - 2x3, to remove any second order discontinu-
ities that might result from the linear interpolation process.

115

1 output

c 9 *

+

output

Figure 7: Linear Interpolation Unit

bc

andom

0

b
xor table

umber
+

output
C

1

xor table

+

xor table

output

Figure 8: Random Number Generator

The interpolation function I(ZCJOO, x001, . . . ,x111,x,, xv, xW)
becomes L(x000, x001,. . . , x111, sm(xu), .+%I), S+kJ)),

where L(. . .) is the linear interpolation function. By adding
this smoothing function, the image quality of the 3-D linear
interpolation is much improved. The hardware consumption
is still much lower than the wavelet method.

Figure 6 shows the Perlin noise hardware. The inputs are
u, V, 20. The fraction, floor and ceiling values of each input
are first calculated and are denoted by ufrac, vfrac, w f rat,
uint, uint, wint, rrint+l, vint+l, wint+l, respectively. The
function, R(xl,x~,xs), is implemented by blocks, labeled
random number. The function,
1(2000,x001,... ,~111r~u,~vr~u!), is implemented by blocks,
labeled sm and Linear Interpolation. ufrac, vfrac, and
wfrac are processed by the smoothing function, sm. The
smoothing function implements the equation sm(x) = 3x2 -
2x3 in lOK50 EAB memory blocks [l]. The outputs of the
smoothing function are denoted by uf rats, vf rats, and
wfracs.

The internal structure of the Linear Interpolation units
is shown in Figure 7. Each unit implements the function
f (a, b, c) = a+c x (b-a). This is a special case of the general

linear interpolation formula, g(x) = g(x0) + “‘“$~~” (x -
x0), where g(x0) = a, g(x1) = b, xl -x0 = 1, and x-x0 = c.
The input, c, must be a positive fraction value between 0 and
1. a and b are real numbers.

The internal structure of the random number unit is
shown in Figure 8. For a given set of inputs, the unit outputs
a corresponding pseudo random number. The xor tables

ers

Figure 9: Marble Internal Structure

V

V
turbulence

color table

1c marble color

Figure 10: Procedural Texture Generator Configuration for
the Marble Texture

shown in Figure 8 execute the function:

yo = (x0 and r-00) xor . . . xor (x” and ro,,)
y1 = (x0 and r10) xor . . . xor (xcn and r-l,,)

. . .
yn = (x0 and rnO) xor . . . xor (x, and r,,)

where (yn,yn_l,. . ,yo) is the output bit vector,

(xnr xn-lr..., x0) is the input bit vector and

t

r00, r01,. . . , Ton)

nO,rll,...,~ln)

. . .

(rnO,rnlr...,rnn)

is a set of pre-generated constant bit vectors [15]. Since riJ
is static, the entire xor table can be implemented in around
8 LUTs. This is much less expensive than 256 x 8 RAM. The
xor table is used to scramble its input bits into a random
value. This scrambling process is repeated three times to
produce a random value for any point in space.

3.2 Perlin Noise Based 3-D Procedural Textures

This section discusses the implementation of marble and
wood textures. Both use the turbulence fractal function.

3.2.1 Marble

The marble algorithm models the internal coloring of
marble. As illustrated in Figure 9, marble is formed by lay-
ers of colored rock deposits. Over time, different colored
layers start to intermix with each other because of the ex-
tremely high pressure and the geological movements. This

116

Figure 11: Marble Texture Mapped Cube

wood color

Figure 13: Procedural Texture Generator configuration for
the Wood Texture

Figure 12: Wood Internal Structure

Figure 14: Wood Texture Mapped Cube

process generates the unique vein-like coloring inside the
marble. This phenomenon is modeled by the function:

M(u, u, 2~) = (turbuZence(u, v, w) + w) mod 128

M(u, u, 2~) is used to index into a color table of 128 entries.
The color table is configured to store the color of the various
rock layers. Each color table entry represents the color of
one layer; and the address of the entry corresponds to the
layer position. When the color table is accessed according
to v, the resulting 3-D texture image corresponds to the
unmixed layers of marble. To simulate the intermixing of
layers over time, the turbulence value is added to v.

The hardware for generating the marble texture is shown
in Figure 10. The final marble texture mapped onto a cube
is shown in Figure 11.

3.2.2 Wood

As illustrated by Figure 12, the internal structure of
wood can be approximated by a series of cones that are
have random perturbations. A tree grows one layer every
year. The color within each layer varies with the seasons.
The range of color within each layer is roughly the same
from one layer to another.

Wood is modeled by the following function:

W(u, ZJ, u1) = ((u” + v2 + ow)+
turbulence(u, v, w)) mod 128

W(u, u, 20) is used to index into a color table of 128 entries.
The range of color within a single layer is stored in the color
table. The basic shape of each cone is modeled by function
u2 + u2 + crw, which is a hyperbolic function of u and w.
The exact equation for cones is u2 + v2 + crw. The hyper-
bolic function is less expensive to compute, and also models
the non-uniform growth of trees, where young trees grow
much faster than older ones. The mod operation creates the
layering effect of cones. Adding turbulence to W(u, v, w)
simulates the irregularity of tree growth.

The hardware for calculating the wood texture is shown
in Figure 13. A wood texture mapped cube is shown in
Figure 14. Notice that the pattern is realistic and consistent
across all faces of the cube. This is more clearly shown in
full color prints.

4 Performance and Hardware Cost

4.1 Performance

The portion of the rendering system implemented on the
TM-2 uses two clock signals. The frame buffer uses a clock
frequency of 25.0 MHz. This speed is mandated by the VGA
monitor that the frame buffer controls. The rest of the sys-
tem uses a clock frequency of 12.5 MHz. Under the 12.5
MHz clock, the system is able to produce one pixel for ev-

117

Textures Look-Up Memory Area Area as % of
Tables 1 Gb of DRAM Area

Marble 2839 1152 bits 47mm” 4.1%
Wood 3428 1152 bits 57mm2 5.0%
Brick 2870 1152 bits 47mm’ 4.1%

Fog 2700 1152 bits 45mm’ 3.9%
Cloud 3006 1152 bits 50mmz 4.4%
Fire 3152 5760 bits 52mmz 4.5%

Table 1: Area Cost of Implementing Procedural Texture Generator

ery four clock cycles. The WSST software is executed on a
296MHz UltraSPARC-II CPU. The software is able to keep
up with the performance of the hardware.

The performance bottleneck for the rendering system is
the STST unit. When implemented on its own, the procedu-
ral texture generator can be clocked at a much higher clock
frequency. When measured in isolation from the rest of the
system, the execution speed of all six textures is determined
by the fractal function unit. On the TM-2, the generator
can run at a maximum clock frequency of 28 MHz for all
six textures, limited to 12.5 MHz by rest of the system. As
designed, it can produce one pixel of texture for every four
clock cycles. This performance is equivalent to 7 Million
Pixels Per Second (MPPS). The system can hll 230K pixels
per frame at 30 Hz frame rate.

4.2 Hardware Cost in Comparison to Memory Based Tex-

ture Mapping

In memory based texture mapping, large amounts of mem-
ory are required to store three-dimensional texture images.
In this study, 3-D procedural textures are synthesized with
a resolution of 512 x 512 x 512. Eight bits are used to rep-
resent the color of each pixel. Since textures are accessed
randomly by rendering engines, their can not be compressed
by conventional compression techniques. Without any form
of compression, each of these three-dimensional images re-
quires 1 Gbit of storage memory. On the other hand, less
than one and half lOK50 FPGAs are required to implement
each texture. This section compares these two approaches
to procedural texture mapping using silicon area as a yard
stick.

Current state of the art technologies can package 256
Mbits of DRAM onto a 286mm’ die area using a 0.25nm
process [17]. Using the same DRAM technologies, 1 Gbit
of memory would require 1144mm’ of die. Altera lOKlO0
FPGAs are the latest implementation of the lOK50 archi-
tecture. Scaled to the same 0.25pm process, each logic array
block of the lOKlO0 FPGAs consumes 132, OOOnm’ of silicon
[3]. This area not only includes the area consumed by the
look-up tables, but also the associated routing resources for
each logic array block. Since each logic array block contains
eight look-up tables, each look-up table consumes approx-
imately 16,000pm2 of silicon. Besides logic array blocks,
embedded memory blocks are also used in texture synthe-
sis. Each embedded memory block contains 2048 memory
bits; and one embedded memory block is approximately the
same size as one logic array block.

The amount of FPGA resource consumed by each proce-
dural texture is shown in column two and column three of
Table 1. Two types of resources are consumed, the look-up
tables and the embedded memory blocks. The total silicon

ASIC
graphic
pipeline

I Perlin I

Figure 15: ASIC+FPGA Procedural Texture Mapping Or-
ganization

areas consumed by these programmable logic resources are
shown in column four. The fifth column of Table 1 shows
the programmable logic area as a percentage of the area con-
sumed by 1 Gbit of DRAM. For the texture algorithms inves-
tigated, the programmable logic implementations use 3.9%
to 5.0% of the area required by the texture memory storing
uncompressed textures of the same resolution. The FPGAs
can achieve even higher area efficiency for algorithms with
more input variables and larger texture spaces.

4.3 Single-Chip Graphic Accelerator with On-Chip Sup-

port for Perlin Noise based Procedural Texture Map-

ping

The experimental data and the wide spread use of Per-
lin noise function also suggest the possibility of synthesizing
procedural textures in a mixture of ASIC and FPGA hard-
ware. The combined ASlC+FPGA approach have the po-
tential of synthesizing Perlin noise based textures at higher
speed and with smaller silicon area cost. The ASIC+FPGA
procedural texture generator might be small enough to fit
on a single chip with the rest of the graphic accelerator. The
possible floor plan for such an single-chip design is shown in
Figure 15.

The difference between this approach and the pure FPGA
approach is that the Perlin noise would be directly imple-
mented in ASIC hardware, which has higher performance
and higher logic density. Some other commonly used proce-
dural texture functions might also be directly implemented
in ASIC along with the Perlin noise. Only the remaining
functions in procedural texture algorithms are required to
be implemented in FPGAs. Table 2 shows the possible per-
formance figure for the ASlC+FPGA implementation for
six textures investigated. Table 3 shows the possible area
consumption by the six textures. These data are measured

118

Textures Max. Clock Freq. MPPS Frames Per Second
Marble 125 MHz 125 476
Wood
Brick

Fog
Cloud
Fire

74 MHz
47 MHz
wiring delay
43 MHz
50 MHz

74 282
47 179
Limited by ASIC Limited by ASIC
43 164
50 190

Table 2: ASIC+FPGA Performance

Textures Look-Up Memory FPGA Area
Tables

Marble 147 0 bits 2.4mmL
Wood 736 0 bits 13mm2
Brick 178 0 bits 2.9mm2
Fog 29 0 bits 0.47mm2
Cloud 335 0 bits 5.5mm2
Fire 481 4608 bits 8.2mm2

Table 3: Area cost of FPGA Hardware in ASIC+FPGA Approach

by removing the Perlin noise function from these six tex-
tures and measuring the speed and hardware costs of the
remaining FPGA circuits. It is assumed that the ASIC im-
plementation of the Perlin noise function is able to keep up
with the performance of the FPGA circuits.

5 Conclusions and Future Work

This paper has presented the architecture of a 3-D com-
puter graphic rendering system which synthesizes 3-D pro-
cedural textures in FPGA hardware. The rendering system
is implemented on the TM-2 digital prototype system. The
prototype system executes at a speed of 12.5 MHz and can
produce pixels at a rate of 3.125 MPPS. On the TM-2 sys-
tem, only 3.9% to 5.0% of the silicon area that would be
consumed by the texture memory is consumed by FPGAs
implementing the procedural texture generator. The imple-
mentation also shown that the procedural texture generator
can achieve high performance required by the animation ap-
plications.

There are three main areas of future work. First, it is
a time-consuming job to manually translate procedural tex-
ture algorithms into hardware, especially when fixed point
representation is used. CAD tools need to be developed
to automate most of this translation process. Second, pro-
cedural texture algorithms contain many arithmetic com-
putations. New programmable logic architectures can be
developed to target at arithmetic applications, so procedu-
ral texture algorithms can be implemented in smaller and
faster programmable hardware. Third, to make the con-
cept of synthesizing procedural texture in FPGA hardware
practical, more procedural texture algorithms need to be
developed. More importantly these algorithms need to be
efficiently implemented in programmable logic.

6 Acknowledgment

We would like to thank Dave Galloway for laying the ground
work by designing a 2-D texture mapping system on the TM-
2. We also like to thank him for all the TM-2 software and

hardware support that he has provided.
We would also like to thank Marcus van Ierssel for design-

ing the VGA interface card and maintaining and constantly
improving the TM-2 hardware, Jonathan Rose for his tech-
nical input, and Vaughn Betz for providing area estimate on
Altera 10K series FPGAs.

References

D3

PI

[31

[41

Fl

161

v-1

PI

PI

ALTERA. A&era 1Ok FPGA Databook.

BERTIN, P., RONCIN, D., AND VUILLEMIN, J. Intro-
duction to Programmable Active Memories. Tech. rep.,
Digital Equipment Corporation, June 1989.

BETZ, V. Architecture and CAD ~OF Speed and Area
Optimization of FPGAs. PhD thesis, University of
Toronto, 1998.

BUELL, D. A., ARNOLD, J. M., AND WATER, J. Splash
2: FPGAs in a custom computing machine. IEEE Com-
puter Society Press, Los Alamos, CA, 1996.

CHEREPACHA, D., AND LEWIS, D. DP-FPGA: An
FPGA Architecture Optimized for Datapaths. Tech.
rep., University of Toronto, 1994.

EBERT, DAVID S.AND MUSGRAVE, F. K., PEACKEY,
D., PERLIN, K ., AND STEVEN, W. Texturing and Mod-
eling: A Procedural Approach. AP Professional, Boston,
1994.

FOLEY, J. D., HUGHES, J., VAN DAM, FEINER, AND
HUGHS. Computer Graphics: Principles and Practice,
second ed. Addison-Wesley, Reading, Mass, 1990.

GALLOWAY, D. 2-D Texture Mapping on TM-2. Tech.
rep., University of Toronto, 1996.

GLEICK, J. Chaos: Making a New Science. Penguin
Books, New York, 1987.

119

[lo] KATZ, R. H. Contemporary Logic Design. Addison-
Wesley Pub Co, 1990.

[ll] LEWIS, D. M., GALLOWAY, D. R., IERSSEL, M. v.,
ROSE, J., AND CHOW, P. The Transmogrifier-2: A 1
Million Gate Rapid Prototyping System. Transactions
on VLSI (1997).

[12] PEACHEY, D. Solid Texturing of Complex Sur-
faces. Computer Graphics (SIGGRAPH ‘85 Proceed-
ings) (1985), 279-286.

[13] PERLIN, K. An Image Synthesizer. Computer Graphics
(SIGGRAPH ‘85 Proceedings) 19 (July 1985), 287-296.

[14] RAJAMANI, S., AND VISWANATH, P. V. Accelerating
the RISC processor using Programmable Logic. Tech.
rep., University of Berkely, 1992.

[15] RAU, B. R. Pseudo-Randomly Interleaved Memory.
ACM (1991).

[16] RAZDAN, R. PRISC: Programmable Reduced Instruc-
tion Set Computers. PhD thesis, Harvard University,
May 1994.

[17] WATANABE, Y., WONG, H., KIRIHATA, T., KATO, D.,
DEBROSSE, J. K., HARA, T., YOSKIDA, M., MUKAI,
H., QUADER, K. N., NAGAI, T., POECHMUELLER, P.,
PFEFFERL, P., WORDEMAN, M. R., AND FUJII, S.
A 286mm’ 256Mb DRAM with x 32 Both-Ends DQ.
IEEE Journal of Solid-State Circuits 31 (April 1996).

[18] WITTING, R. D. OneChip: an FPGA Processor with
Reconfigurable Logic. Master’s thesis, University of
Toronto, 1995.

120

