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Abstract 

Procedural textures can be effectively used to enhance the 
visual realism of computer rendered images. Procedural tex- 
tures can provide higher realism for 3-D objects than tradi- 
tional hardware texture mapping methods which use mem- 
ory to store 2-D texture images. This paper proposes a new 
method of hardware texture mapping in which texture im- 
ages are synthesized using FPGAs. This method is very 
efficient for texture mapping procedural textures of more 
than two input variables. By synthesizing these textures on 
the fly, the large amount of memory required to store their 
multidimensional texture images is eliminated, making tex- 
ture mapping of 3-D textures and parameterized textures 
feasible in hardware. This paper shows that using FPGAs, 
procedural textures can be synthesized at high speed, with 
a small hardware cost. Data on the performance and the 
hardware cost of synthesizing procedural textures in FP- 
GAS are presented. This paper also presents, the FPGA 
implementations of two Perlin noise based 3-D procedural 
textures. 

1 Introduction 

In many computer graphic applications, polygon meshes 
are used to model geometrical surfaces. Texture mapping 
increases the level of surface detail of polygon meshes by 
mapping two-dimensional texture images on to the meshes. 
In common graphic cards, the 2-D t,exture images are pre- 
computed and stored in memory on the cards. Procedural 
texture mapping extends the concept of texture mapping 
by determining the surface coloring of polygon meshes us- 
ing computer algorithms. These procedural texture algo- 
rithms typically model the structures of materials like con- 
crete, wood and marble. They can be defined in 3-D space 
and be parameterized using input variables defining addi- 
tional attributes other than the texture coordinates. 

Procedural texture mapping has become an important 
method of generating visually realistic images in many 
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graphic applications. The computation, however, is often 
time-consuming. Procedural texture algorithms, when ex- 
ecuted in software, often cannot achieve the real time per- 
formance demanded by many computer animation applica- 
tions. While 2-D textures can be stored in RAM, 3-D tex- 
tures require excessive memory. There are no efficient meth- 
ods of performing texture mapping using three-dimensional 
or parameterized procedural textures using fixed hardware. 
The primary reason for this is the variety of procedural tex- 
tures, which makes it difficult to design a single, efficient 
hardwired implementation for synthesizing all textures. 
Other reasons include the complexity of many procedural 
texture algorithms, and the ongoing development of new 
algorithms. A hardwired accelerator not only would be dif- 
ficult to design to support all the exiting procedural texture 
algorithms, but also difficult to modify to support new al- 
gorithms in the future. 

This paper describes a new approach to synthesizing pro- 
cedural textures in hardware in which FPGA hardware is 
used to provide high performance implementations of pro- 
cedural texture algorithms. The primary technique used is 
to compile the procedural algorithms into hardware struc- 
tures that can be programmed into FPGAs. This approach 
is more memory efficient than storing pre-generated textures 
in memory, since only the algorithms are stored. The use of 
FPGAs also results in the ability to exploit the parallelism 
presented in each individual algorithm. 

A procedural texture generator was designed using FP- 
GAS. It is flexible enough to synthesize a variety of proce- 
dural textures in high speed, and is small enough to be im- 
plemented on one modern FPGA chip. The procedural tex- 
ture generator was implemented using the Transmogrifier-2 
(TM-2) rapid prototype system [ll], as a part of a 3-D com- 
puter graphic rendering system design. The performance 
and hardware cost of synthesizing procedural textures in 
FPGAs are estimated using the data collected on the TM-2 
system. 

2 3-D Rendering System 

‘I A 3-D computer graphic rendering system was designed 
to evaluate the implementation issues of synthesizing pro- 
cedural textures in FPGA hardware. The architecture of 
this rendering system is briefly described here. The input 
to the rendering system is a list of triangles. Each vertex of 
these triangles is specified by two triplets. The first triple, 
(2, y, z), specifies the position of the vertex in a 3-D world 
space. The second triple, (u, w, w), specifies the position of 
the vertex in a 3-D texture space. The rendering system 
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Figure 1: 3-D Rendering System Using Procedural Textures 
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Figure 2: Experimental Setup 

performs four major operations on each triangle. First, the 
system transforms the 3-D world coordinates of the vertices 
into the 2-D screen coordinates. Second, all pixels inside the 
triangle are determined using the 2-D screen coordinates of 
the vertices. The texture coordinates of these pixels are then 
calculated. Third, the system uses the texture coordinates 
to calculate the color of each pixel. Finally the image is 
stored in a frame buffer and displayed on a screen. 

Figure 1 shows the overall architecture of the rendering 
system. It consists of four major components: 

1. a world to screen space transformation (WSST) unit 

2. a screen to texture space transformation (STST) unit 

3. a procedural texture generator 

4. a frame buffer 

Each component performs one of the operations listed in the 
previous paragraph. Conventionally, WSST functions are 
usually implemented in software; STST and the frame buffer 
are implemented in hardware; and textures are implemented 
using a RAM. We propose to implement textures in FPGAs 
as a procedural texture generator. A set of textures can 
be implemented by loading their algorithms into the FPGA 
based procedural texture generator. Although STST and 
the frame buffer should ideally be implemented in ASIC, we 
also constructed them in FPGAs on our prototype. 

The 3-D rendering system is implemented on the TM-2. 
As shown in Figure 2, the TM-2 consists of two boards. Each 
board contains two Altera lOK50 FPGAs and four banks of 
64-bit wide SRAM. The TM-2 system can be connected to 

a local area network through a host workstation. Using the 
host, any workstation on the network can communicate with 
the TM-2. 

The resources used in the implementation include one 
workstation, all four FPGAs on the TM-2, one bank of TM- 
2 SRAM, a VGA card, and a monitor. The workstation 
is connected to the TM-2 via the local area network. The 
partitioning of the rendering system among all hardware re- 
sources is shown in detail in Figure 3. Since there are only 
four FPGAs available, the entire rendering system cannot 
be implemented on the TM-2 system. The WSST calcu- 
lations are performed once per triangle, while other units 
perform calculations once per pixel. Therefore, the WSST 
unit is implemented on the workstation, as commonly done 
in many graphic cards. Two FPGAs are allocated to the 
STST unit. One and half FPGAs are allocated for the pro- 
cedural texture generator. The frame buffer is implemented 
using the remaining resources. It uses one bank of TM-2 
SRAM as a double frame buffer. It also controls the VGA 
card and the monitor. 

All software is written in the C programming language. 
All hardware designs are done in the Altera Hardware De- 
scription Language (AHDL). The rendering system uses a 
screen space resolution of 512 x 512. The texture space res- 
olution is 512 x 512 x 512. Colors are eight bits. 

3 FPGA Implementations of Procedural Texture Algo- 

rithms 

Six procedural texture algorithms have been implemented in 
FPGAs. Each of these algorithms takes three inputs, u, v, 
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Figure 3: Partition of the Hardware Resources 

W. These three inputs specify a set of coordinates in a 3-D 
texture space. The substances that these textures model can 
be classified into two categories, solid and gaseous. Three 
textures model the coloring of solids including marble, brick, 
and wood. Another three model the coloring of gaseous sub- 
stances including fog, fire, and cloud. Despite the difference 
in appearances, all six textures are fractal in nature - they 
all use the Perlin noise function to create fractal effects. In 
software, these algorithms are implemented in IEEE float- 
ing point arithmetic. Floating point hardware, however, is 
expensive to implement in FPGAs. Fixed point hardware is 
used, instead, for minimum precision implementations. Ex- 
tensive pipelining is used to maximize the throughput of the 
algorithms. 

3.1 Fractals and the Perlin Noise Function 

This section describes the FPGA implementations of fractals 
and the Perlin noise function. 

3.1.1 Fractals 

In computer graphics, fractal functions are often imple- 
mented by summing several versions of a base function at 
different scales and frequencies. Figure 4 shows this pro- 
cess in one dimension. There are a series of functions at the 
left side of the figure. They are derived from the same base 
function by varying the frequency and the amplitude. More 
formally, if the base function is represented by the equation 
y = P(U), then the base function at m times the frequency 
can be represented by the equation y = P(m x u). To cre- 
ate the fractal function, each version of the base function is 
scaled inversely proportional to its frequency; then all ver- 
sions are summed together. Therefore, the fractal function 
becomes: 

y = P(U) + f x P(2 x U) + . . . + A x P(m x u) 

For every new version of the base function created, the fre- 
quency is usually doubled and the scale factor is usually 
halved from the previous version. m is usually set to be 
between eight and sixty-four. A 3-D fractal function uses a 
base function of three variables, P(u, o, 2~). All input vari- 
ables of the 3-D base function are scaled. 

Monitor 
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Figure 4: One Dimensional Fractal Function 
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Figure 6: Perlin Noise Function Hardware 

Figure 5 shows the architecture of the fractal function 
in detail. In the figure, blocks u, u, w, and fractal are all 
registers. The multiplexers and the registers are controlled 
by a control unit not shown in the figure. The hardware 
is used to implement two fractal functions, turbulence and 
fractalsum. These functions are defined by the following 
formula: 

turbulence = C!_O 2-‘P(2’u, 2’u, 2’zu) 

fractalsum = Et /2-‘P(2’u, 2’0,2’w)l 

where the function P(u, V, w) represents the Perlin noise 
function, the actual 3-D base function used. The hardware 
implements the above two equations by scaling and accu- 
mulating either the value of the Perlin noise function or the 
absolute value of the Perlin noise function into the register 
labeled fractal. When the absolute value is used, the result- 
ing fractal value is the turbulence. As the name implies, 
the turbulence function simulates the turbulence character- 
istics found in many fluids and solidified solids [6]. When 
the value of the Perlin noise function is directly used, the 
resulting function is the fractalsum function, which is of- 
ten used to simulate gas formations [6]. In both cases, four 
cycles are needed to create one fractal value. 

3.1.2 Perlin Noise Function 

The Perlin noise function is one of the most computation- 
ally efficient base functions. In our applications, we use a 
Perlin noise function of three-dimensional space. It can be 

implemented using the following equation: 

Pfu. v. wj = 

where R(zl ,z2,23) is a pseudo random function of its in- 
puts; and I(zooo, ~001,. . . , 3~1~~,2~,z~,z~) is an interpola- 
tion function in three dimensions. This calculates the func- 
tion value on the 8 corners of a grid cell, and performs in- 
terpolation based on the associated values of the eight and 
the distance between the point in question and each of these 
grid points [13]. 

The original Perlin noise function, as actually proposed 
by Ken Perlin, implements the function, R(z~,Q,z~), as 
three tables of 256 pre-generated pseudo random numbers 
stored in memory and two adders [6]. This method can con- 
sume quite large amounts of memory, since multiple copies 
of R(q) x2, x3) are needed to fully exploit the parallelism 
available. A more efficient hardware method of generating 
pseudo random function values using xor tables [15] is used 
in this study. This method provides significant saving in 
hardware. 

The second improvement that we made to the origi- 
nal Perlin noise function for hardware implementation is to 
the interpolation method, I(XOOO,ZOO~,. . . , xlll,z,,, xv, xw). 
The original function uses an computationally expensive 
wavelet interpolation method [6]. This method has some su- 
perior statistical properties than the ordinary 3-D linear in- 
terpolation method; however, it is much more computation- 
ally expensive. In this study, we use a smoothing function, 
sm(s) = 3x2 - 2x3, to remove any second order discontinu- 
ities that might result from the linear interpolation process. 
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The interpolation function I(ZCJOO, x001, . . . ,x111,x,, xv, xW) 
becomes L(x000, x001,. . . , x111, sm(xu), .+%I), S+kJ)), 

where L(. . .) is the linear interpolation function. By adding 
this smoothing function, the image quality of the 3-D linear 
interpolation is much improved. The hardware consumption 
is still much lower than the wavelet method. 

Figure 6 shows the Perlin noise hardware. The inputs are 
u, V, 20. The fraction, floor and ceiling values of each input 
are first calculated and are denoted by ufrac, vfrac, w f rat, 
uint, uint, wint, rrint+l, vint+l, wint+l, respectively. The 
function, R(xl,x~,xs), is implemented by blocks, labeled 
random number. The function, 
1(2000,x001,... ,~111r~u,~vr~u! ), is implemented by blocks, 
labeled sm and Linear Interpolation. ufrac, vfrac, and 
wfrac are processed by the smoothing function, sm. The 
smoothing function implements the equation sm(x) = 3x2 - 
2x3 in lOK50 EAB memory blocks [l]. The outputs of the 
smoothing function are denoted by uf rats, vf rats, and 
wfracs. 

The internal structure of the Linear Interpolation units 
is shown in Figure 7. Each unit implements the function 
f (a, b, c) = a+c x (b-a). This is a special case of the general 

linear interpolation formula, g(x) = g(x0) + “‘“$~~” (x - 
x0), where g(x0) = a, g(x1) = b, xl -x0 = 1, and x-x0 = c. 
The input, c, must be a positive fraction value between 0 and 
1. a and b are real numbers. 

The internal structure of the random number unit is 
shown in Figure 8. For a given set of inputs, the unit outputs 
a corresponding pseudo random number. The xor tables 
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Figure 9: Marble Internal Structure 
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Figure 10: Procedural Texture Generator Configuration for 
the Marble Texture 

shown in Figure 8 execute the function: 

yo = (x0 and r-00) xor . . . xor (x” and ro,,) 
y1 = (x0 and r10) xor . . . xor (xcn and r-l,,) 

. . . 
yn = (x0 and rnO) xor . . . xor (x, and r,,) 

where (yn,yn_l,. . ,yo) is the output bit vector, 

(xnr xn-lr..., x0) is the input bit vector and 

t 

r00, r01,. . . , Ton) 

nO,rll,...,~ln) 

. . . 

(rnO,rnlr...,rnn ) 

is a set of pre-generated constant bit vectors [15]. Since riJ 
is static, the entire xor table can be implemented in around 
8 LUTs. This is much less expensive than 256 x 8 RAM. The 
xor table is used to scramble its input bits into a random 
value. This scrambling process is repeated three times to 
produce a random value for any point in space. 

3.2 Perlin Noise Based 3-D Procedural Textures 

This section discusses the implementation of marble and 
wood textures. Both use the turbulence fractal function. 

3.2.1 Marble 

The marble algorithm models the internal coloring of 
marble. As illustrated in Figure 9, marble is formed by lay- 
ers of colored rock deposits. Over time, different colored 
layers start to intermix with each other because of the ex- 
tremely high pressure and the geological movements. This 
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Figure 11: Marble Texture Mapped Cube 
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Figure 14: Wood Texture Mapped Cube 

process generates the unique vein-like coloring inside the 
marble. This phenomenon is modeled by the function: 

M(u, u, 2~) = (turbuZence(u, v, w) + w) mod 128 

M(u, u, 2~) is used to index into a color table of 128 entries. 
The color table is configured to store the color of the various 
rock layers. Each color table entry represents the color of 
one layer; and the address of the entry corresponds to the 
layer position. When the color table is accessed according 
to v, the resulting 3-D texture image corresponds to the 
unmixed layers of marble. To simulate the intermixing of 
layers over time, the turbulence value is added to v. 

The hardware for generating the marble texture is shown 
in Figure 10. The final marble texture mapped onto a cube 
is shown in Figure 11. 

3.2.2 Wood 

As illustrated by Figure 12, the internal structure of 
wood can be approximated by a series of cones that are 
have random perturbations. A tree grows one layer every 
year. The color within each layer varies with the seasons. 
The range of color within each layer is roughly the same 
from one layer to another. 

Wood is modeled by the following function: 

W(u, ZJ, u1) = ((u” + v2 + ow)+ 
turbulence(u, v, w)) mod 128 

W(u, u, 20) is used to index into a color table of 128 entries. 
The range of color within a single layer is stored in the color 
table. The basic shape of each cone is modeled by function 
u2 + u2 + crw, which is a hyperbolic function of u and w. 
The exact equation for cones is u2 + v2 + crw. The hyper- 
bolic function is less expensive to compute, and also models 
the non-uniform growth of trees, where young trees grow 
much faster than older ones. The mod operation creates the 
layering effect of cones. Adding turbulence to W(u, v, w) 
simulates the irregularity of tree growth. 

The hardware for calculating the wood texture is shown 
in Figure 13. A wood texture mapped cube is shown in 
Figure 14. Notice that the pattern is realistic and consistent 
across all faces of the cube. This is more clearly shown in 
full color prints. 

4 Performance and Hardware Cost 

4.1 Performance 

The portion of the rendering system implemented on the 
TM-2 uses two clock signals. The frame buffer uses a clock 
frequency of 25.0 MHz. This speed is mandated by the VGA 
monitor that the frame buffer controls. The rest of the sys- 
tem uses a clock frequency of 12.5 MHz. Under the 12.5 
MHz clock, the system is able to produce one pixel for ev- 
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Textures Look-Up Memory Area Area as % of 
Tables 1 Gb of DRAM Area 

Marble 2839 1152 bits 47mm” 4.1% 
Wood 3428 1152 bits 57mm2 5.0% 
Brick 2870 1152 bits 47mm’ 4.1% 

Fog 2700 1152 bits 45mm’ 3.9% 
Cloud 3006 1152 bits 50mmz 4.4% 
Fire 3152 5760 bits 52mmz 4.5% 

Table 1: Area Cost of Implementing Procedural Texture Generator 

ery four clock cycles. The WSST software is executed on a 
296MHz UltraSPARC-II CPU. The software is able to keep 
up with the performance of the hardware. 

The performance bottleneck for the rendering system is 
the STST unit. When implemented on its own, the procedu- 
ral texture generator can be clocked at a much higher clock 
frequency. When measured in isolation from the rest of the 
system, the execution speed of all six textures is determined 
by the fractal function unit. On the TM-2, the generator 
can run at a maximum clock frequency of 28 MHz for all 
six textures, limited to 12.5 MHz by rest of the system. As 
designed, it can produce one pixel of texture for every four 
clock cycles. This performance is equivalent to 7 Million 
Pixels Per Second (MPPS). The system can hll 230K pixels 
per frame at 30 Hz frame rate. 

4.2 Hardware Cost in Comparison to Memory Based Tex- 

ture Mapping 

In memory based texture mapping, large amounts of mem- 
ory are required to store three-dimensional texture images. 
In this study, 3-D procedural textures are synthesized with 
a resolution of 512 x 512 x 512. Eight bits are used to rep- 
resent the color of each pixel. Since textures are accessed 
randomly by rendering engines, their can not be compressed 
by conventional compression techniques. Without any form 
of compression, each of these three-dimensional images re- 
quires 1 Gbit of storage memory. On the other hand, less 
than one and half lOK50 FPGAs are required to implement 
each texture. This section compares these two approaches 
to procedural texture mapping using silicon area as a yard 
stick. 

Current state of the art technologies can package 256 
Mbits of DRAM onto a 286mm’ die area using a 0.25nm 
process [17]. Using the same DRAM technologies, 1 Gbit 
of memory would require 1144mm’ of die. Altera lOKlO0 
FPGAs are the latest implementation of the lOK50 archi- 
tecture. Scaled to the same 0.25pm process, each logic array 
block of the lOKlO0 FPGAs consumes 132, OOOnm’ of silicon 
[3]. This area not only includes the area consumed by the 
look-up tables, but also the associated routing resources for 
each logic array block. Since each logic array block contains 
eight look-up tables, each look-up table consumes approx- 
imately 16,000pm2 of silicon. Besides logic array blocks, 
embedded memory blocks are also used in texture synthe- 
sis. Each embedded memory block contains 2048 memory 
bits; and one embedded memory block is approximately the 
same size as one logic array block. 

The amount of FPGA resource consumed by each proce- 
dural texture is shown in column two and column three of 
Table 1. Two types of resources are consumed, the look-up 
tables and the embedded memory blocks. The total silicon 

ASIC 
graphic 
pipeline 

I Perlin I 

Figure 15: ASIC+FPGA Procedural Texture Mapping Or- 
ganization 

areas consumed by these programmable logic resources are 
shown in column four. The fifth column of Table 1 shows 
the programmable logic area as a percentage of the area con- 
sumed by 1 Gbit of DRAM. For the texture algorithms inves- 
tigated, the programmable logic implementations use 3.9% 
to 5.0% of the area required by the texture memory storing 
uncompressed textures of the same resolution. The FPGAs 
can achieve even higher area efficiency for algorithms with 
more input variables and larger texture spaces. 

4.3 Single-Chip Graphic Accelerator with On-Chip Sup- 

port for Perlin Noise based Procedural Texture Map- 

ping 

The experimental data and the wide spread use of Per- 
lin noise function also suggest the possibility of synthesizing 
procedural textures in a mixture of ASIC and FPGA hard- 
ware. The combined ASlC+FPGA approach have the po- 
tential of synthesizing Perlin noise based textures at higher 
speed and with smaller silicon area cost. The ASIC+FPGA 
procedural texture generator might be small enough to fit 
on a single chip with the rest of the graphic accelerator. The 
possible floor plan for such an single-chip design is shown in 
Figure 15. 

The difference between this approach and the pure FPGA 
approach is that the Perlin noise would be directly imple- 
mented in ASIC hardware, which has higher performance 
and higher logic density. Some other commonly used proce- 
dural texture functions might also be directly implemented 
in ASIC along with the Perlin noise. Only the remaining 
functions in procedural texture algorithms are required to 
be implemented in FPGAs. Table 2 shows the possible per- 
formance figure for the ASlC+FPGA implementation for 
six textures investigated. Table 3 shows the possible area 
consumption by the six textures. These data are measured 
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Textures Max. Clock Freq. MPPS Frames Per Second 
Marble 125 MHz 125 476 
Wood 
Brick 

Fog 
Cloud 
Fire 

74 MHz 
47 MHz 
wiring delay 
43 MHz 
50 MHz 

74 282 
47 179 
Limited by ASIC Limited by ASIC 
43 164 
50 190 

Table 2: ASIC+FPGA Performance 

Textures Look-Up Memory FPGA Area 
Tables 

Marble 147 0 bits 2.4mmL 
Wood 736 0 bits 13mm2 
Brick 178 0 bits 2.9mm2 
Fog 29 0 bits 0.47mm2 
Cloud 335 0 bits 5.5mm2 
Fire 481 4608 bits 8.2mm2 

Table 3: Area cost of FPGA Hardware in ASIC+FPGA Approach 

by removing the Perlin noise function from these six tex- 
tures and measuring the speed and hardware costs of the 
remaining FPGA circuits. It is assumed that the ASIC im- 
plementation of the Perlin noise function is able to keep up 
with the performance of the FPGA circuits. 

5 Conclusions and Future Work 

This paper has presented the architecture of a 3-D com- 
puter graphic rendering system which synthesizes 3-D pro- 
cedural textures in FPGA hardware. The rendering system 
is implemented on the TM-2 digital prototype system. The 
prototype system executes at a speed of 12.5 MHz and can 
produce pixels at a rate of 3.125 MPPS. On the TM-2 sys- 
tem, only 3.9% to 5.0% of the silicon area that would be 
consumed by the texture memory is consumed by FPGAs 
implementing the procedural texture generator. The imple- 
mentation also shown that the procedural texture generator 
can achieve high performance required by the animation ap- 
plications. 

There are three main areas of future work. First, it is 
a time-consuming job to manually translate procedural tex- 
ture algorithms into hardware, especially when fixed point 
representation is used. CAD tools need to be developed 
to automate most of this translation process. Second, pro- 
cedural texture algorithms contain many arithmetic com- 
putations. New programmable logic architectures can be 
developed to target at arithmetic applications, so procedu- 
ral texture algorithms can be implemented in smaller and 
faster programmable hardware. Third, to make the con- 
cept of synthesizing procedural texture in FPGA hardware 
practical, more procedural texture algorithms need to be 
developed. More importantly these algorithms need to be 
efficiently implemented in programmable logic. 
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