Ph.D. Annual Monitoring Report

by Andy Gean Ye

1. Introduction

Thisreport reviews my Ph.D. reseach for the academic year 2000—20010ur reseach isin the
areaof FPGA architedures for datapath applications. In particular, the goal isto increase FPGA
logic density by utili zing detapath regularity in the application circuits. Our research methodd ogy
isempiricd. We use austom CAD tods and kenchmark circuits to evaluate various architedural
aternatives. At the start of the yea, we proposed a basic datapath FPGA architecture. During the
yeda, we creaed a synthesistod and apackingtod that synthesizes and packs VHDL and Verilog
circuitsinto the proposed architedure. We creaed a benchmark suite of fifteen datapath circuits.

We aso made achitedural improvements based onempirical results.

We foundthat current synthesistoals produce much higher Look Up Table (LUT) court when
configured to preserve datapath regularity and herarchy. In many cases, the LUT court inflation
can be & much as 50% compared with regular flat compil e modes, which donat preserve datap-
ath regularity. We augmented a conventional synthesistoal (Synopsys Design Compil er) to reduce
thisLUT court inflation. When compared with the cnventional tool operating onaflat circuit
(not configured to employ hierarchy), the augmented, hierarchy-retained, approadh has an average
LUT court inflation o only 3%.

We aso designed a padking tod that packs the synthesistod output into the clusters of our pro-
posed architedure. In terms of Basic Logic Element (BLE) utili zation, our tod isamost as good

asregular padking todls packing LUTsinto comparable regular FPGA clusters.

We foundthat after pading there still i sa high degree of regularity in the fifteen benchmark cir-
cuits. In particular, the majority of signalsin these drcuits can be classified into two types —
buses and controls. Around 4846 of two terminal nets can be grouped into 4 bit wide buses and
abou 35% of two terminal nets are from high fan ou control signals. Thereislittle overlap

between these two types of signals.

Therest of thisreport is divided into six sedions. Sedion 2discusses the projed motivation and



experiment methoddogy. Section 3 aescribesthe proposed datapath FPGA architecture. Section 4
and Section 5describes the synthesis and padking todls respectively. Section 6 presents experi-
ment results. The conclusion and future work are presented in Sedion 7.

2. Project Motivation and Experiment M ethodology

In thisthes's, we investigate FPGA architedures eciaized for datapath appli cations. In recent
yeas, the caacity of FPGAs has been continuouwsly increasing. With thisincreased cgpadty,
more and more datapath appli caions are implemented onFPGAS. Nowadays, it has become feasi-
ble to implement an entire CPU or graphic processor onasingle FPGA. Except for dedicaed
cary logic, however, the mgjority of the current commercial FPGAs include little suppat for
datapath applicaions. We fed that there ae two major areas where thisincrease in datapath logic

can be utili zed to improve FPGA logic density and performance

First, current commercial CAD todsdo nd efficiently use the regularity of datapath appli cations.
Datapath designs are typically flattened into asingle level of flat logic and gothroughthe same
synthesis processas randam logic drcuits. The dternative method d structural synthesis, which

keeps the bit-level hierarchy intad, is not well suppated by commercia or academic todls.

In structural synthesis, one does naot arbitrarily flatten a datapath design. Instead, the synthesizer
keeps trad of the regularity of datapath applications. This regularity informationis then passed
down to the subsequent stages in the CAD flow. In current commercial tods, structural synthesis
often results in much higher LUT court than flat synthesis. Thisinflationin LUT count has
bemme astrong ds-incentive for using structural synthesis, and is detrimental to the overall effi-

ciency of any datapath FPGA architedure that utili zes datapath regul arity.

Previous reseach, [1] [2], has shown that the regularity of datapath applicaions can be used to
increase the placement and routing density of their FPGA implementations. Furthermore, the
work in [3] has down that under appropriate optimization techniques gructural synthesis of data-
path circuits can be as efficient as flat synthesis in terms of standard cdl literal court. But these
cgpabiliti es have not yet been implemented in today’s commercial todls. In thisthesis, we crede
CAD todsthat can structurally synthesize datapath circuitsinto LUTs in order to make dficient

use of the propcsed datapath architedure; furthermore, we use various techniques to ensure that



our structural synthesis approadies the dficiency of flat synthesis.

Seoond, commercial FPGA architedures do nd fully take advantage of the regularity of datapath
applications. Especialy the technique of configuration memory sharing is not widely used to
adhieve aeasaving. In aregular FPGA architedure, reconfigurable resources are independently
controll ed by their own configuration memory. In a configuration memory sharing architecture,
onthe other hand, agroup d reanfigurable resources share asingle set of configuration memory
[4]. By sharing configuration memory, all membersin the group kehave identicdly. The work in
[4] studied configuration memory sharing in FPGAs based onregular single LUT clusters. The
effed of configuration memory sharing onrouting was estimated. In this thesis, we propaosed a
new configuration memory sharing scheme for FPGAs based onmulti-LUT clusters. Routing
architecure will also be studied in detail, where adua place adroute toolswill be designed for

the new architecture.

Experiment Methodology
We use an empirical methoddogy to evaluate the dficiency of our propased FPGA architecture.

First, we mlled asuite of datapath intensive applications to be used as benchmarks. These bench-
marks are then converted into a ansistent hierarchica descriptionin either Verilog a VHDL for-
mat as edfied by our datapath-oriented CAD flow. Currently, our benchmark set consists of
fifteen datapath circuits from the Pico-Java processor [7]. We ae planning to convert and add

more drcuitsincluding DSPs, ASICsand aher CPUs to ou benchmark suite in the coming year.

Then, we use the datapath-oriented CAD flow, designed as part of this thesisto synthesize, pad,
place and route these benchmarks into the proposed FPGA architedure. Data ae then colleded
for choasing the best architedural aternative and comparing the proposed architecture with the
traditional architectures. In the past yea, we have completed the synthesis and padkingtodls.
These todls are described in detail | ater in the report.

3. Featuresof the Datapath FPGA Architecture
This ®dion lriefly describes the datapath FPGA architedure that we ae currently investigating.
All feaures except the datapath control signal distribution retwork are described in more detail in

[5]. Throughou our architectural work, we asume the basic buil ding docks of our datapath



FPGAs are BLEs as shown in Figure 1. Each BLE consistsof asingle LUT andasinge D type
Flip Flop (DFF). Thisbasic building Hock iswidely used in many acalemic studiesincluding [6].

— LL O
— —
M — Configuration
Clock M

Figure 1: A Basic Logic Element (BLE)

Thissedionisdivided into threesubsedions. Subsedion 1 describesthe dustering strategy of our
architedure. Subsedion 2 describes how configuration memory sharing is used to route bus sg-
nals. Finally, Subsection 3describes how highfan ou control signals are distributed in our pro-
posed architedure.

Clustersand Subclusters
BLEs are grouped into two levels of clustering herarchies. We all thetop level clusters, and the

lower level subclusters. A subcluster is $own in Figure 2. Each subcluster consists of N BLES
with | subcluster inpus and N subcluster outputs. | and N are parameters that we will use our
empirical methoddogy to explore. Each BLE output is conreded to a arrespondng subcluster
output. Each BLE input isfully conreded to al subcluster inputs and subcluster outputs through

asubcluster local routing retwork.

A single duster consists of m subclusters. Since datapath circuits usually consist of identical bit
dices, asingle cluster can be used to implement an m bit wide datapath circuit with N or less
LUTs per slice. For larger datapath circuits, we deaompaose them into small er datapath circuits
eat of which can beimplemented byasinge duster. When implementing random logic drcuits,
eadt subcluster behaves as aregular FPGA cluster as defined in [6]. Clusters are used in conjunc-
tionwith the bus routing and the cntrol signal distribution retworks to efficiently implement
datapath circuits. A cluster is siownin Figure 3.



1,

— BLE
> | ocd
—P ) BLE —e—P
|npu:s —P Routlng
4L Network | BLE T
—P BLE T—»
Figure2: A Subcluster
Cluster
Sub- Sub- Sub- Sub-
cluster cluster cluster cluster

Outputs

Tracks

Coar se Grain Routing Channels

Figure3: A Cluster

Our FPGA routing architedure contains two types of routing channels — coarse grain routing

channels and fine grain routing channels. Coarse grain routing channels are designed to route bus

signals. Tradksin a aarse grain routing channel are grouped into m bit wide buses. m isequal to

the number of subclustersin acluster. Within each routing bus, correspondng switcheson dstinct

tracks dhare the same @nfiguration memory. By sharing configuration memory, coarse grain rout-

ing channels can route bus signalsin less areathan regular fine grain routing channels, andthisis

one of the areasavings that we anticipate to achieve with the datapath architedure.

Not al signalsin datapath circuits can be grouped into buses. For example, randam logic signals

from control logic can rarely be grouped into buses. It isinefficient to use awide routing bus for



just asingle bit signal. For these signals, we include regular routing resourcesin ou routing archi-
tedure. We call these routing resources fine grain routing channels. We wil | study the optimal
propation d the two types of routing resources in this thesis. A cluster with ore @arse grain

routing bus and ore fine grain routing track is ill ustrated in the Figure 4.

Cluster
Sub- | [Sub- | [Sub- | [Sub- |
M cluster cluster cluster cluster
|
Rl i R - M
’_m 1 {4 1 1|
Coarse Gran

Routing Tradks

Fine Grain 1 1 1 L

Roting Track S )

Ih=l ]

Figure 4. Coarse Grain Routing

Figure 4 aso ill ustrates how cluster outputs are connected to coarse grain routing buses. When
conreding to a aarse grain routing bus, each subcluster output only conredsto ore distinct rout-
ingtradk. As usual the mnredionis configurable througha routing switch; however, al connec-
tions share the same configuration memory. The inpu connections to coarse grain routing buses

aresimilar and areillustrated in Figure 5.

Also shownin Figure 4 and Figure 5 are the regular output and input conredionsto fine grain
routing tracks, respedively. When connectingto fine grain routing tracks, each subcluster behaves
as aregular FPGA cluster. The connection boxes between subclusters and the fine grain routing

tracks are similar to the connedion boesin aregular FPGA architedure [9].

In Figure 5, signals ¢4, ¢, C3, and ¢4 are from a control input conrection, which is not shown in



Cluster
M
d; | d, | dr | ds |
Fi Sub- | r2 Sub- | 13 Sub- | rA Sub-
Cl 1 H- c, 4 H- Ca -] c 4 -]
cluster [-2 cluster 3 cluster 4 cluster
M
i [ .
It Coarse Grain
. { Routing Tradks
* \ Coarse Grain
. Routing Tradks
'_
Fine Grain
M M M M .
l l l l Routing Tradk
Fine Grain
Routing Tradk
4 4 4 @

d,, dy, d3, d, — datapath input conredions from coarse grain routing buses
r, Iy, 3, Iy — regular inpus conrections from fine grain routing tradks
C1, Cp, C3, C4 — control input conredions from fine grain routing tracks

Figure5: Input Connection Boxes

the figure. Control input conrections are discussed in detail i n the next subsection.

Special Control Signal Distribution Network
Althoughcontrol signals only constitute a small percentage of total netsin datapath circuits, they

areusually highfan ou and constitute alarge percentage of two terminal netsin datapath applica
tions. We find almost as many two terminal control nets as two terminal bus netsin ou bench-
mark set. Section 6 presentsthisdatain detail.

A typica control signal isgenerated by randam logic (non-datapath) and used in several bit slices.
Due to theregularity of datapath circuits, a control signal typicdly fansout to agroup d identica
bit dlices. Thisregularity can be patentially used to increase the efficiency of control signal rout-
ing retworks.



In ou routing architedure, we route antrol signals throughthe fine grain routing tracks. Spedal
control inpu connection boaces $own in Figure 6 are designed to efficiently distribute control sig-
nalsin clusters. The conrection boxseleds atrack from the fine grain routing channel and dstrib-
utesthissignal to all subclustersin a duster. When a @ntrol input conredion boxis used, it
functions as m regular fine grain input conrection boces. As with coarse grain routing channels,

we anticipate area savings from this architectural fegure.

Cluster

d d
211: L ISub- gi sub | B sub | S | sub
cluster cluster | ©3 cluster | cluster

v | Control Input
Conredion Box

Fine Grain
Routing Tradks

d, dy, d3, d, — datapath input conrections from coarse grain routing buses
ry, Iy, I3, 1y — regular inpus conredions from fine grain routing tracks
Cq, Cy, C3, C4 — cortrol input conrections from fine grain routing tradks

Figure6: Control Signal Distribution

4. Datapath-Oriented Structural Synthesis

Our propaosed FPGA architecture requires s/nthesis toalsthat preserve datapath regularity. In our
datapath-oriented structural synthesis, thisis adieved by keguing it dlice descriptionsin their
own hierarchy. Similar to the methoddogy wsed in [3], optimization steps that will destroy the
regularity of datapath circuits are not performed.

The synthesis CAD flow isill ustrated in Figure 7. This flow takes HDL (Hardware Description

Language) specifications asinpus. The datapaths must be spedfied by instantiating componrents
from our predefined library called Datapath Component Library. The HDL descriptions are then
optimized and mapped into LUTs and DFFs througha three stage iterative optimization pocess



which uses our own structural optimizaion agorithm in stage two, Structural Optimization, and
the Synopsys Design Compil er in the other two stages, Initial Synopsys Compile and Final Synop-
sys Compile. Two iterationsare aurrently used. The final output of the CAD flow isin VHDL and
islabeled Final Structural VHDL Descriptionin Figure 7. It isdiscussed in detail in Sedion 5

For every benchmark, we compare the final LUT court of our structural synthesiswith the LUT
court of flat Synopsys compile (flatten compile). We flat compil e theinitial structural HDL
description and the optimized structural VHDL descriptions from all two iterations. These flat
compil e sample points are shown in shaded ovals in Figure 7. One is labeled Initial Sructural
HDL Description; the other labeled Optimized Sructural VHDL Description. The best flat com-

pil e result isused in comparison with ou structural compil e results.

Therest of thissedion describes the synthesis CAD flow in detail. It is divided into threesubsec
tions. The datapath comporent library isdiscussed in Subsedion 1 The Synopsys Design Com-
piler configuration is discussed in Subsedion 2 and finally our structural optimization algorithm
isdiscussed in Subsection 3

Datapath Component Library
The datapath comporent library iswritten in Veril og. It contains fundamental datapath building

blocks including multi plexors, adders/subtradions, shifters, comparators, and registers.

To capture the structure of a datapath comporent, we use atwo level hierarchy which consists of
bit slices and datapath comporents. Each hit sliceis described behaviorally in its own Veril og
modue. Each datapath comporent is also described by a Verilog modue. Inside the datapath
componrent modues, correspondng hit slices are instantiated multi ple times based on datapath
width. Datapath componrent modues aso contain behavior descriptions of all | ogic that is not part

of hit slices.

Synopsys Design Compiler Configuration
Synopsys Design Compil er is a powerful and versatil e synthesistod. It can read several popuar

HDL description languages and apply various optimizaion methods. It does not, however, effec
tively ded with the trade off between optimizaion and datapath preservation. The most effective

optimization methods in Synopsys, flatten compile and uniquify compile, destroy either design



Initial Structural
HDL Description

- Initial Synopsys Compile

Un-optimized Structural
VHDL Description

Datapath Comporent Library

Structural Optimizétion

Optimized Structural
VHDL Description

Final Synopsys Compile

Y

Yes
Final Structural VHDL Description

Figure7: Overall Flow of the Synthesis Tool
hierarchy or datapath regularity. The third compile option, set dont touch compile, onthe other

hand, can be used to preserve datapath hierarchy and regularity, but it does not perform optimiza

tionaaoss hierarchicd boundaries. Asthe result, set dont touch compile is much less effedive

10



than the other two compil e options [8].

In order to balance the trade off between optimization and datapath preservation, we use the three
stage synthesis process as shown in Figure 7. Theinitial Synopsys compil e stage uses the set dont
touch compile method It maps the HDL descriptioninto LUTs and DFFs. Before eat compile,
we set the dont touch attribute for each bit dicemodue and ead datapath comporent modue.
The output of this stage has athreelevel hierarchy as $own in Figure 8. These threelevels cap-
ture the bit dli ces, the datapath componrents and the overall design description, respectively.

Datapath Datapath
Comporent A Componrent B
Bit SliceAl Bit Slice A2 Bit SliceB1 Bit Slice B2

Figure8: Hierarchical Structural of the Initial Synopsys Compile Output

Since theinitial Synopsys compil e does nat optimize across hierarchy boundiries, the LUT court
of itsoutput can be ashigh as 1.5 times of the best Synopsysflat synthesis. In the structura opti-
mization stage we attempt to reducethe LUT court by performinglogic optimization aaoss hier-
archy boundries. Using ou own structural optimization algorithm, we selectively perform
optimizationsthat are acosshierarchy boundxies, but still preserve datapath regularity. The algo-
rithm used in the structural optimization stage is discussed in detail in the next subsection.
Designs are then re-mapped into LUTs and DFFsin the final Synopsys compil e stage, which uses
the set dont touch compile methodand is simil ar to theinitial Synopsys compil e stage. We found
that by repeding stage two and three we can reduce the LUT court to within 103 times of the
best Synopsysflat synthesis.

11



Structural Optimization Algorithm
At the start of the structural optimization, we divide eab datapath comporent into m bit wide

chunks, where m corresponds the number of subclustersin acluster. Each chunk d datapath is
contained in its own modue. An ogtimization is performed oy when it is applicable to all m bit
dicesin amodue. Three magjor optimizations are aurrently performed during the structural opti-

mizaion. They are mux tree @llapsing, bit dice merging, and Lt dicel/O optimization.

The first stage of our optimizationis mux tree coll apsing’. A mux treesometimes can be substi-
tuted with asingle mux which requireslesslogic to implement. An exampleis hownin Figure 9.
Here we can substitute the mux tree on the | eft with the single mux ontheright. To implement the
two muxes and the and gate on the left we needs two 4inpu LUTSs. To implement the mux and
the and gate onthe right, we need orly ore 4 input LUT. The extrarandam logic in right circuit
usually isshared by several bit dices, so its cost is negligible in wide datapath circuits.

A A
S1

S1 j

2 R
2
R

J DFF

rl — randam logic

Figure 9: Mux Tree Collapsing Example

The second opgimization that we perform is bit slice merging. In this gage, we merge two mod-
ules together to form larger bit slices. Thisis apattern identification process. Two datapath mod-

ules are merged together if al bit dicesin oremodue aeidenticdly conneded to their

1. Itiscurrently performed manually, but will be aitomated in the future.

12



correspondng it slicesin the other. An example is siown in Figure 10. Here each bit dicein
Modue A are onreded to a arrespondng it dicein Module B. Furthermore, the nets conred-
ingthese slices all have output pin Aol as sources and inpu pin Bi2 as snks. By creating larger

bit dlices, we aeae more optimization oppatunities for the next stage and the final Synopsys

compile.
Bit Ao [ Bit Bit ' [T Bit
Slice p _’gz Bj1 Slice m | Slicep : Bi1 Slice
a1 Pf : B1 olal gz | B1
]
Bit —Aol] | [~ O B S [Bit W B
Slice ] .. Bi1 Slice < | Slice Bi1 Slice
A I = A | I
S lan ff Bi2 B2 | D Sla2 “PF R2
S S 3
o) 8 >
§ Bit Ao O Bt |3 % | BIt | [0 Bit
Slice 5 _’gz Bi1 Slice €| Slicep | Bj1 Slice
a3 Bf ' B3 <[ A3 Bf | B3
S
BIt Aol | L[ 0 Bit 728 Bit @ Bi
Slice ] .. Bi1 Slice Slice Bi1 Slice
A I A | I
as "Pf Bi2 B4 as "PF B4
Before Merging After Merging

Figure 10: A Bit Slice Merging Example

Finally, bit dlice 1/0 optimizaionis performed. Three types of datapath modue inpu buses and
one type of output buses are mnverted into hit sliceinternal signals at this gage. Optimizationis
performed orly when all signalsin amodue’'s 1/O bus med the same optimization criteria. We
eliminate inpu buses whaose signals are dl constant one or constant zero asill ustrated in Figure
13. Inpu buses that are connected to ouput buses from the same module are di minated asiill us-
trated in Figure 13. Inpu buses that have the same sources as other input buses are diminated as
illustrated in Figure 13. Output buses that do nd have any sinks are dso eliminated at this dage.

13



Module A

BitSlice Ad_] Al
Al Ai2m

BitSlice Ad_] Al
A2 Ai2m

BitSlice Ad_] Al
A3 Ai2m

BitSlice Ad_] Al

A4 Ai2m

Before Optimization

Module A

BitSlice Ad_]

Al Ai2m
BitSlice Ad_]
A2 Ai2m
BitSlice Aol ]
A3 Ai2m
BitSlice Ad_]
A4 Ai2m

After Optimization

Figure 11: Input Optimization Criteria A

Module A

Bit Slice Ad_|| Al
Al Ai2m

Bit Slice Ad_|| Al
A2 Ai2m

Bit Slice Ad_|| Al
A3 Ai2m

Bit Slice Ad_|| Al
A4 Ai2m

Before Optimization

Module A

Bit Slice
Al Ai2_|
Bit Slice
A2 Ai2_|
Bit Slice
A3 Ai2—|
Bit Slice
A4 Ai2_|

After Optimization

Figure 12: Input Optimization Criteria B

14




BitSlice Ad] Ai BitSlice Adl] AilD
Al Ai2m e Al
A
<{ BitSlice Ad] Ai < BitSice Ad] Ai
2 A2 . - 2 A2 lD
S AiZm S
p®] p®]
o A o
= BitSlice Ad] Al = BitSlice AgL] AllD
A3 A2 T A3
A
BitSice Ad] Al BitSice AgL] AllD
A4 A2 T A4
A
Before Optimization After Optimization

Figure 13: Input Optimization CriteriaC

5. Datapath-Oriented Packing

Theinpu to ou padkingtod isthe output of the synthesistod. The final structural VHDL
description produced by the synthesistod consists of LUTs and DFFs. Datapath LUTs and DFFs
are grouped into modues. Each modue is divided into m identical bit slices, where m isequal to
the number of subclustersin a duster. Randam logic LUTs and DFFs are nat grouped into any

modue.

Our padking tod padsthese LUTs and DFFsinto clusters. We first padk LUTs and DFFs both

inside and ouside the modues into BLEs using an algorithm similar to the one presented in [6].

A normal padkingtod padksBLEsinto clustersone BLE at atime. Our cluster, however, ism bits
wide. When dealing with datapath modues, our padker packs m identical BLEsinto ore duster at
atime. The packing algorithm is a modified T-Vpad algorithm [6] and hes three stages.

First, we crede agraph consists of large nodes and small nodes conneded by nets representing
signals. Eadh large nocde represents m identicd BLESs, eat from adistinct bit dlice in a datapath
modue. Each small node represents asingle BLE that does not belongto any datapath.

15



Then, large nodes are packed into clusters. Clusters are aeated ore & atime and packed urtil the
cluster has noroom left for any unpacked large nodes. Throughou the packing process eat BLE
in alarge noce is associated with a unique subcluster in the target cluster. The large node can be

padked into the target cluster if ead individual BLE can be padked into its correspondng subclus-

ter.

Typicdly, there ae many large nodes that can be packed into atarget cluster. We dhoase one with
the highest attradion to the cluster. To compute the dtradion d alarge node to acluster, we first
compute the atradion between each BLE in the node with its correspondng subcluster using an
algorithm similar to the one used in T-Vpack. The attradion d alarge nodeto a duster isthen set

to be the maximum attraction o all of its BLEsto their subclusters.

In thefinal stage, BLEs outside the modues are packed into subclusters using the T-Vpad algo-

rithm. New subclusters creaed at this dage will be grouped into clusters during dacement.

Our padking algorithm achieves high BLE utili zation. We packed ou datapath benchmarks into
clusters. Ead cluster contains 4 subclusters eat of which has 10inpus and four 4-inpu LUTS.
On average, we atieve BLE utili zation d 97%. The detail ed utilizationresultsare listed in Table
1. Column oreliststhe name of ead benchmark circuit. Column two li sts the number of BLESIn
ead circuit. Column threeli sts the number of clusters datapath BLES are packed into. Ead clus-
ter contains 16 BLEs. Column four lists the number of subclustersrandam-logic BLEs are paded
into. Eadh subcluster contains 4 BLES. As previoudy stated, these subclusters remain unpaded
and we are working on pacement tods that will groupthese subclusters into clustersin the place
ment stage. Finally column five lists the BLE utilization over both clusters and urclustered sub-

clusters for ead circuit.

Table 1: Utilization for Datapath Oriented Packing

Unclustered BLE

BLECount | Clusters | o\ iusters | Utilization

deu_dpeth 966 57 15 9%
ex_dpeth 2649 161 37 9%

16



Table 1: Utilization for Datapath Oriented Packing

BLE Court Clusters Létr:glclljﬁs?e?g Utiﬁlz_aliion
icu_dpeth 3245 208 23 95%
imdr_dpath 1255 76 22 96%
pipe_dpeth 473 29 3 9%
smu_dpeth 557 31 20 97%
ucode_dat 1304 77 20 9%
ucode _reg 84 5 1 100%
code_seq_dp 368 19 17 98%
exporent_dp 517 23 44 95%
incmod 867 49 21 9%
mantissa_dp 942 55 31 94%
multmod_dp 1634 85 74 9%
prils_dp 393 20 20 98%
rsadd_dp 313 18 10 95%
Total 15567 913 358 97%

6. Experiment Results

In this sedion, we present data collected onfifteen datapath benchmarks after synthesis and padk-
ing. Table 2 summarizesthe LUT and DFF inflation o each benchmark. Eadh inflationfigureis
cdculated by comparing the structural synthesis with the best flat synthesis as defined in Sedion
4. Column two and threelist the LUT and DFF court from the best flat synthesis, respectively.
Column four andfivelist the LUT and DFF count from the structural synthesis, respedively. The
inflationfigures for LUTs and DFFs are listed in column six and seven, respedively. The average
LUT inflationis 3.2% and the average DFF inflation is 0.0%. These numbers show that structural

synthesis does not significantly increase the LUT and DFF courts for these benchmarks.

17



Table2: LUT and DFF Inflation after Structural Synthesis

Best Flat Synthesis Structural Synthesis Inflation

LUT Count | DFF Court | LUT Cournt | DFFCourt | LUT | DFF
dcu_dpath 960 288 966 288 | 0.63% | 0.0%
ex_dpeth 2530 364 2553 364 | 0.91% | 0.0%
icu_dpath 3120 355 3235 355| 3.7% | 0.0%
imdr_dpath 1182 170 1218 170| 3.1% | 0.0%
pipe_dpath 443 218 471 218| 6.3% | 0.0%
smu_dpeth 490 190 493 190 | 0.61% | 0.0%
ucode_dat 1243 224 1304 224 4.9% | 0.0%
ucode reg 78 74 84 76| 5.1% | 0.0%
code_seq_dp 218 216 223 216| 2.3% | 0.0%
exporent_dp a77 64 501 64| 5.0% | 0.0%
incmod 779 72 867 72| 11% | 0.0%
mantissa_dp 846 192 878 192 | 3.8% | 0.0%
multmod_dp 1558 193 1634 193| 4.9% | 0.0%
prils_dp 377 0 388 0| 29% | 0.0%
rsadd_dp 346 0 305 0| -12% | 0.0%
Total 14647 2620 15118 2620| 3.2% | 0.0%

The next two tables dhow two major types of nets that exist in datapath benchmarks after padking.
A two terminal busis defined as an m bit wide bus (4 in this case) going from asinge duster to
ancther with each hit generated by a distinct subcluster. They can be dficiently routed by the
coarse grain routing channelsin ou proposed architecture. On average 48% of two terminal nets
in these benchmarks can be grouped into 4 bit wide buses. The detail s for ead benchmark are
summarized in Table 3. In the table, column two li sts the total number of two terminal netsin eadch
circuit. Column threeliststhe total number of two terminal nets that belongto 4 bit wide two ter-

minal buses. Finally column four lists the net court in column three & a percentage of the total

18



two terminal nets.

Table 3: Percentage of Two Terminal Netsthat are 4 Bit Wide Buses

4 Bit Wide Two Terminal Buses
Total Two Terminal
vecoun | SaPacatiges s
dcu_dpeth 2232 1087 49%
ex_dpath 6547 3411 52%%
icu_dpeth 8047 3782 A4T%
imdr_dpeth 3100 1547 50%
pipe_dpath 1049 500 48%
smu_dpeth 1167 564 48%
ucode data 3143 1631 52%
ucode_reg 194 140 2%
code seq_dp 799 464 58%
exporent_dp 1362 436 32%
incmod 2013 843 42%
mantissa_dp 2533 1196 47%
multmod_dp 3380 1332 3%
prils_dp 864 352 41%
rsadd_dp 722 372 52%
Total 37152 17657 48%

A control net isasingle net that enters a duster and fans out to all m subclusters (4 in this case).
They can be dficiently distributed by our specia control signal distribution retwork inside dus-
ters. The control nets on average wnsist of 35% of the total two terminal nets in these bench-
marks. The details for each benchmark is sown in Table 4. In the table, column two lists the total
number of two terminal netsin ead circuit. Column three lists the total number of two terminal

nets that belongto 4 bit fan ou control signals. Finally column four li sts the net count in column

19



three as a percentage of the total two terminal nets.

Table 4: Percentage of Two Terminal Netsthat are 4 Bit Fan Out Control Signals

4 Bit Fan Out in Cluster
Total Two Terminal
vecoun | SaPacatiges s
dcu_dpeth 2232 964 43%
ex_dpath 6547 2572 3%
icu_dpeth 8047 2860 36%
imdr_dpeth 3100 1108 36%
pipe_dpath 1049 440 42%
smu_dpeth 1167 296 25%
ucode data 3143 1304 41%
ucode_reg 194 40 21%
code seq_dp 799 144 18%
exporent_dp 1362 312 23%
incmod 2013 670 33%
mantissa_dp 2533 900 36%
multmod_dp 3380 848 25%
prils_dp 864 276 32%%
rsadd_dp 722 196 27%
Total 37152 12928 35%

7. Conclusion and Future Work

Thisreport summarized my major Ph.D. reseach results in the academic yea 2000—-2001We
discussed the current upward trend d implement datapath applicaion onFPGAs and how CAD
and FPGA architectures can be designed to adchieve area savings by exploring datapath regularity.
We propaosed a datapath FPGA architecture with atwo level clustering herarchy, coarse grain
routing channels, and spedal control signal distribution retworks. We dso discussed ou empiri-

20



cd methoddogy d measuring the dficiency of our proposed architedure.

CAD tod s needed bythe empirical study are aurrently being built. Two tods, the datapath-ori-
ented structural synthesizer and the datapath-oriented padker, have been completed and their algo-
rithms were discussed in thisreport. We al so measured the regularity of fifteen benchmark circuits
after padking. We foundthat there is high degree of regularity in these padked benchmarks, with
48% of two terminal nets that can be grouped into 4 bit wide buses and 3% of two terminal nets
from control signalswith at least 4 bit fan ou. Thereisvery little overlap between these two types

of two terminal nets.

Future Work
Finally there ae two major pieces of work remainingin my thess. First, we need to gather more

datapath benchmarks. All current benchmarks come from the Pico-Java processor. We want to add
new circuits from other datapath appli cationsto increase diversity. Preferably, we will add circuits
form DSPand ASIC applications.

Sewond, we nedl to finish and implement datapath-oriented place and route toadls. To fully under-
stand the impad of our architedural changes onrouting trad utili zation, we neel to place and
route the benchmark circuits. A specialized router is neaded due to the inclusion d the marse
grain routing retworks, the specialized control signal distribution retworks and the unique con
nedion boaesin our architedure. Placement tools also will be modified to take advantage of the
regularity of datapath circuits. When these goals are cmpleted, our proposed FPGA architecture
can befurther studied.

8. Bibliography:

[1] Andreas Koch, “ Structured Design Implementation — A Strategy for Implementing Regular
Datapaths on FPGAS’, Proceedings of the 1996 ACM Fourth International Symposium on Field-
Programmable Gate Arrays, 1996 Pages 151-157

[2] A. R. Nasea, M. Balakrishnan, Anshul Kumar, “An Efficient Tedhnique for Mapping RTL
Structures onto FPGAS’, Proceedings of the Fourth Inter national WWorkshop on Field Programma-
ble Logic and Applications, September 1994 Pages 99-110

21



[3] Thomas Kutzschebauck, Leon Stok, “Regularity Driven Logic Synthesis’, Proceedings of
IEEE/ACM International Conference on Computer Aided Design, 200Q Pages 439—446

[4] Don Cherepacha, David Lewis, “DP-FPGA: An FPGA Architecture Optimized for Datap-
aths’, VLS Design 1996, 1996 Pages 329-343

[5] Andy Gean Ye, “Ph.D. Thesis Proposal: Routing Architedure and Place ad Route Todls for
DP-FPGA”, University of Toronto Technical Report, June. 200Q

[6] VaughnBetz, Jonathan Rose, Alexander Marquardt, Architecture and CAD for Deep-Submi-
cron FPGAs, Kluwer Academic Publishers, 1999

[7] Pico-Java Processor Design Documentation, Sun Microsystems Inc., 1999
[8] Synopsys Design Compiler Manual, SynopsysInc., 1999

[9] Alan Marshall, Jean Vuill emin, Brad Hutchings, “A Reanfigurable Arithmetic Array for Mul-
timedia Applicaions’, Proceedings of the 1999 ACM/S GDA Seventh International Symposium
on Field Programmable Gate Arrays, February 1999 Pages 135-143

22



