Procedural Texture Mapping on FPGAs

Andy G. Ye

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science in
the Graduate Department of Electrical and Computer Engineering,

University of Toronto

(© Copyright by Andy G. Ye 1999

Procedural Texture Mapping on FPGAs
Andy G. Ye
Master of Applied Science, 1999
the Graduate Department of Electrical and Computer Engineering

University of Toronto

Abstract

Procedural textures can be effectively used to enhance the visual realism of computer rendered
images. Procedural textures can provide higher realism for 3-D objects than traditional hardware
texture mapping methods which use memory to store 2-D texture images. This thesis investigates
a new method of hardware texture mapping in which texture images are synthesized using FPGAs.
This method is very efficient for texture mapping procedural textures of more than two input
variables. By synthesizing these textures on the fly, the large amount of memory required to store
their multidimensional texture images is eliminated, making texture mapping of 3-D textures and
parameterized textures feasible in hardware. This thesis shows that using FPGAs, procedural
textures can be synthesized at high speed, with a small hardware cost. Data on the performance
and the hardware cost of synthesizing procedural textures in FPGAs are presented. This thesis

also presents the FPGA implementations of six Perlin noise based 3-D procedural textures.

ii

Acknowledgments

I would like to thank my supervisor, Professor David Lewis, for all the guidance and technical
advice. His guidance has made this two years a remarkable learning experience for me.

I would like to thank Dave Galloway for laying the ground work by designing a 2-D texture
mapping system on the TM-2. 1 also would like to thank him for all the TM-2 software and
hardware support that he has provided.

I would like to thank Marcus van lerssel for designing the VGA interface card and maintaining
and constantly improving the TM-2 hardware.

I also would like to thank Michiel van de Panne, James Stewart, Jonathan Rose, Vaughn Betz,
Qiang Wang, and Yaska Sanka for their technical help and advice.

I am tremendously grateful to my parents for their support.

Finally I would like to thank all the people who have worked in LP392 in the past two years

for creating such a great research and learning environment.

iii

Contents

Introduction

Background and Motivation

2.1 Fractal Geometry
2.2 Procedural Texture Mapping e
2.3 Altera 10K50 FPGA Architecture o
2.4 FPGA Based Custom Computing Machines
2.5 Goalsand Outlines L

3-D Rendering System

3.1 World to Screen Space Transformation
3.1.1 Clipping Algorithm
3.1.2 Perspective Projection Algorithm 0000,
3.1.3 Solid Texture Parameter Calculation Algorithm
3.1.4 Triangle-Quad Transformation Algorithm

3.2 Screen to Texture Space Transformation
3.2.1 Instruction Fetching and Decoding Unit
3.2.2 Quad to Scan-line Conversion Unit 0L,
3.2.3 Scan-line to Pixel Conversion Unit

3.3 Procedural Texture Generator L

3.4 TFrame Buffer e

iv

4 FPGA Implementations of Procedural Texture Algorithms 37

4.1 Fractals and the Perlin Noise Function 37

4.1.1 Fractals o 37

4.1.2 Perlin Noise Function L o 39

4.2 Perlin Noise Based 3-D Procedural Textures 43

4.2.1 Solid Type Procedural Textures 43

4.2.2 Gas Type Procedural Textures 49

5 Performance and Hardware Cost 54

5.1 Performance L 54

5.2 Hardware Cost in Comparison to Memory Based Texture Mapping 55
5.3 Single-Chip Graphic Accelerator with On-Chip Support for Perlin Noise based Pro-

cedural Texture Mapping e 56

6 Conclusions and Future Work 59

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

Altera 10K50 Architecture oo 7
Logic Element Block Diagram oo 7
Logic Elements Configured for Arithmetic Operations 8
FPGA Based Custom Computer Machine for Procedural Texture Mapping 10
3-D Rendering System Using Procedural Textures 12
Experimental Setup 13
Partition of the Hardware Resources 14
View Volume 16
Clipping Algorithm 17
Decomposing a Polygon into Triangles 17
Screen Space to Texture Space Transformation 18
Two Intersecting Triangles 22
Quads L s 23
Scan-line Conversion from Triangles to Quads 24
Triangle to Quad Transformation 25
Major Functional Blocks of STST Unit 26
STST Unit Instruction Format o o 27
Instruction Fetching and Decoding Unit 29
Decomposing a Quad into Scan-lines L o L 30
Incremental Algorithm for Quad to Scan-line Conversion 31
Datapath for Quad to Scan-line Conversion 32
Incremental Algorithm for Scan-line to Pixel Conversion 34

vi

3.19 Datapath for Scan-line to Pixel Conversion 35

3.20 1/0O Interface of the Procedural Texture Generator 35
3.21 Frame Buffer 36
4.1 One Dimensional Fractal Function, 38
4.2 Fractal Function Hardware o o 38
4.3 Perlin Noise Function Hardware 40
4.4 Linear Interpolation Unit 40
4.5 Random Number Generator Lo 42
4.6 Marble Internal Structure Lo e 43
4.7 Procedural Texture Generator Configuration for the Marble Texture 44
4.8 Marble Texture Mapped Cube L 44
4.9 Wood Internal Structure 45
4.10 Procedural Texture Generator Configuration for the Wood Texture 46
4.11 Wood Texture Mapped Cube 46
4.12 Brick Wall Pattern o e 47
4.13 Procedural Texture Generator Configuration for the Brick Texture 48
4.14 Brick Texture Mapped Cube Lo 48
4.15 Procedural Texture Generator Configuration for the Fog Texture 50
4.16 A Slide of Fog Texture e 50
4.17 Procedural Texture Generator Configuration for the Cloud Texture 51
4.18 A Slide of Cloud Texture e 52
4.19 Procedural Texture Generator Configuration for Fire Texture 52
4.20 A Slide of Fire Texture e e 53
5.1 ASIC4+FPGA Procedural Texture Mapping Organization 57

vii

List of Tables

3.1 STST Unit Instructions e e 28
5.1 Area Cost of Implementing Procedural Texture Generator 55
5.2 ASICHFPGA Performance o o i e e e e e 57
5.3 Area cost of FPGA Hardware in ASIC+FPGA Approach 58

viii

Chapter 1

Introduction

In many computer graphic applications, polygon meshes are used to model geometrical surfaces.
Texture mapping increases the level of surface detail of polygon meshes by mapping two-dimensional
texture images on to the meshes. In common graphic cards, the 2-D texture images are pre-
computed and stored in memory on the cards. Procedural texture mapping extends the concept
of texture mapping by determining the surface coloring of polygon meshes using computer al-
gorithms. These procedural texture algorithms typically model the structures of materials like
concrete, wood and marble. They can be defined in 3-D space and be parameterized using input
variables defining additional attributes other than the texture coordinates. The main advantages
of procedural textures over conventional 2-D textures are much enhanced visual realism, reduced
storage requirement, enhanced ease of use and user controllability.

Procedural texture mapping has become an important method of generating visually realis-
tic images in many graphic applications. The computation, however, is often time-consuming.
Procedural texture algorithms, when executed in software, often cannot achieve the real time per-
formance demanded by many computer animation applications. While 2-D textures can be stored
in RAM, 3-D textures require excessive memory. There are no efficient methods of performing
texture mapping using three-dimensional or parameterized procedural textures using fixed hard-
ware. The primary reason for this is the variety of procedural textures, which makes it difficult
to design a single, efficient hardwired implementation for synthesizing all textures. Other reasons
include the complexity of many procedural texture algorithms, and the ongoing development of

new algorithms. A hardwired accelerator not only would be difficult to design to support all the

CHAPTER 1. INTRODUCTION 2

existing procedural texture algorithms, but also difficult to modify to support new algorithms.

This thesis investigates a new approach to synthesizing procedural textures in hardware in
which FPGA hardware is used to provide high performance implementations of procedural texture
algorithms. The primary technique used is to compile the procedural algorithms into hardware
structures that can be programmed into FPGAs. This approach is more memory efficient than
storing pre-generated textures in memory, since only the algorithms are stored. The use of FPGAs
also results in the ability to exploit the parallelism presented in each individual algorithm.

A procedural texture generator was designed using the FPGAs. It is flexible enough to syn-
thesize a variety of procedural textures in high speed, and is small enough to be implemented on
one or two modern FPGA chips. The procedural texture generator was implemented using the
Transmogrifier-2 (TM-2) rapid prototype system [LGIt98], as a part of a 3-D computer graphic
rendering system design. The performance and hardware cost of synthesizing procedural textures

in FPGAs are estimated using the data collected on the TM-2 system.

Chapter 2

Background and Motivation

This thesis uses techniques from the fields of fractal geometry, computer graphics, FPGAs and
FPGA based custom computing machines. Relevant concepts and terminologies are reviewed in
this chapter.

Fractal geometry was pioneered by Benoit Mandelbrot in 1970’s. It is a mathematical framework
for describing irregular shapes and is used by many procedural texture algorithms to model naturally
formed objects. Section one reviews the major developments and concepts of fractal geometry.
Section two reviews the development of procedural texture mapping. The Altera 10K50 FPGAs
used to synthesize procedural textures are reviewed in section three. Section four reviews the
development of FPGA based custom computing machines. Section five presents the major goals of

this thesis and outlines the remaining chapters of the thesis.

2.1 Fractal Geometry

One of the most important properties of shapes and spaces is the number of dimensions. Classically,
the number of dimensions are integer numbers. For example, a dot has an integer dimension of
zero; a line has an integer dimension of one; a plane has an integer dimension of two; and a cube
has an integer dimension of three. Similarly spaces are also defined by integer dimensions of one,
two, and three. In three-dimensional space, one of the most widely used forms of geometry is the
Euclidean geometry.

However, integer dimensions and Euclidean geometry cannot satisfactorily describe all shapes.

CHAPTER 2. BACKGROUND AND MOTIVATION 4

For describing shapes that are continuous but not smooth at any point (fractal), straight line seg-
ments of Euclidean geometry and the integer dimension numbers become inadequate. A example
of one-dimensional fractal shapes is the silhouettes of coastlines [Hog, Gle87]. Coastlines are con-
tinuous curves that demarcate the boundary between the sea and the land. Like any fractal curves,
coastlines cannot be approximated by any polygon path. This property was first discovered by the
English scientist, Lewis I'. Richardson in 1920s. Through extensive experiments, Richardson noted
that if segments of length e are used to approximate a coastline in a polygon path, the total length

of the polygon path L(e) is approximately

where F’ and D are constants and D is a real number between 1.0 and 2.0. As shown by the above
equation, when e approaches zero, L(e) approaches infinity. All similar curves, which have infinite
length when approximated by a Euclidean polygon path, are defined to be fractal lines. Similar
fractal shapes can also be found in two, three, and other multidimensional spaces.

The concept of fractal was first proposed by Benoit Mandelbrot when he rediscovered Richard-
son’s finding in the 1970s [Gle87]. Mandelbrot also noticed that there are self similarities in the
silhouettes of coastlines and in all fractal shapes. Coastlines have similar degree of roughness at
all scales. If a segment of a coastline is magnified, the magnified segment possesses roughly the
same degree of roughness as the unmagnified coastline. In fact, the magnified segment looks much
like an unmagnified coastline. This kind of self similarity exists even when a coastline segment is
magnified to several thousand times of its original size. And for some fractal lines, like the Koch
curve, the self similarity can exist at an infinite scale of magnification.

To properly describe fractal shapes, Mandelbrot proposed the concept of fractal dimension.
Fractal dimensions expand the classical definition of dimension from the positive integer domain
into the positive real number domain. Each fractal dimension number is a real number. The integer
part of a fractal dimension number is the same as the classical Euclidean dimension. The fractional
part of a fractal dimension number represents roughness of the object. The fractal dimension of all
Euclidean shapes, which are smooth at all points, are equal to their Euclidean dimension. However,
the fractal dimensions of fractal shapes are always greater than their Euclidean dimension; and the
difference between a fractal dimension number and a corresponding Euclidean dimension number

can be as much as 1.0.

CHAPTER 2. BACKGROUND AND MOTIVATION 5

A formal mathematical definition of fractal geometry and fractal dimension is beyond the scope
of this thesis. Interested readers can refer to the book ”The Science of Fractal Images” [PS88] for
more detail.

Many shapes and forms in nature have some fractal characteristics. These shapes exhibit self
similarities across a range of scales. Clouds and air turbulence are other examples of fractal struc-
tures. Many biological systems, like the human blood vessel system, also have fractal structures.
Because of the abundance of fractal shapes and forms in nature, many techniques have been devel-
oped in computer graphics to synthesize fractal images or use fractals to model phenomena. The
Perlin noise function is one of the most successful methods. The next section reviews procedural

texture mapping and the Perlin noise function.

2.2 Procedural Texture Mapping

In many computer graphic applications, polygon meshes are used to model the shapes of geometri-
cal surfaces. To represent a surface using a polygon mesh, the surface is sampled at predetermined
intervals; and the polygon mesh is then created by connecting the adjacent sampling points. The
accuracy of the approximation can be increased by increasing the number of approximating poly-
gons. For the most basic level of visual realism, each polygon in the polygon mesh can be assigned
a single surface color. The polygons are rendered onto the screen using a series of geometrical
transformations; and these transformation processes are often called the rendering pipeline.

Many algorithms can be used to increase the level of surface detail beyond the single color
assigned to each polygon. These algorithms include various illumination and shading models,
surface-detail polygons, and texture mapping. The technique of texture mapping was pioneered by
Catmull [FHvD*90, Cat74] and refined by Blinn and Newell [FHvD*90, BN76]. It increases the
level of surface detail by associating a digitized or synthesized two-dimensional image with each
polygon. Using these images, texture mapping greatly increases the level of visual realism while
requiring only a minimum amount of computation.

Texture mapping is performed after the polygons have been transformed into the screen coor-
dinate system. To determine the color of a screen pixel, the polygon that covers that screen pixel

is first identified. The screen coordinate of the screen pixel is then transformed into the texture

CHAPTER 2. BACKGROUND AND MOTIVATION 6

coordinate of the polygon. The texture coordinate is used to index into the texture memory con-
taining the image. The corresponding color in the texture memory represents the surface color of
the polygon at that pixel; and this color is used to calculate the final pixel color.

Peachey [Pea85] and Perlin [Per85] extended the traditional 2-D texture mapping to 3-D solid
texture mapping. Traditional texture mapping uses two-dimensional images as textures, while solid
texture mapping uses three-dimensional images as textures. Solid texture mapping is much simpler
to use. It produces more realistic and accurate images for rendering objects whose surface textures
are determined by the internal structure of the material that form them. Typical examples of
these materials are concrete, wood and marble. Since 3-D textures are difficult to store and time
consuming to obtain from real life objects, many solid textures are described as procedural textures.

Procedural texture mapping uses textures synthesized by computer algorithms. Many procedu-
ral textures are noise based textures. The use of noise functions introduces randomness and fractal
to textures and allows the creation of more realistic images. One of the most widely used noise
functions is the Perlin noise function [Per85]. Using this function, programmers can easily simulate

the irregularities that characterize many naturally formed objects.

2.3 Altera 10K50 FPGA Architecture

Researchers at the Computer Engineering Department have been designing a multi-FPGA digital
circuit prototype system, called the Transmogrifier. Several versions of the system have been
designed; the current version, TM-2, is constructed using Altera 10K50 FPGAs. The Altera 10K50
FPGA architecture is well suited as a platform for generating procedural textures because of the

following characteristics:
e large capacity of programmable logic
e inclusion of large programmable memory elements
e extensive software support
e register rich environment which can be used to implement circuits with many pipeline stages.

e support for implementing fast arithmetic circuits

CHAPTER 2. BACKGROUND AND MOTIVATION 7

Interconnects

Logic Array Block Embedded Array Block

Figure 2.1: Altera 10K50 Architecture

Input #1___

Input #2___ -
Look-Up LB
Table g

Input #3___| 04

Input #4___|

Figure 2.2: Logic Element Block Diagram

Each Altera 10K50 FPGA chip contains approximately 35,000 programmable logic gates and
over 300 programmable 1/O pins. In addition, each chip contains 20,480 programmable RAM
bits, which are essential for the implementation of several procedural texture algorithms. The
overall structure of the Altera 10K50 FPGAs are shown in Figure 2.1. There are two types of
programmable logic structures, logic array blocks and embedded array blocks. The programmable
logic structures can be connected to each other via vertical and horizontal interconnect channels.

The embedded array blocks are arrays of programmable RAM bits. Each of these blocks can
be configured into 1 x 2048, 2 x 1024, 4 X 512, or 8 x 256 RAM arrays. Several embedded array
blocks can be connected together to form larger RAM arrays. Each Altera 10K50 chip contains 10
of these embedded array blocks.

CHAPTER 2. BACKGROUND AND MOTIVATION

Carry-In
N
| |
g% l Look-Up Table |
1 IRE
| I I A
L | o
! Cary Chain |1 | &
A l
| |
I I
) o
| |
g% l Look-Up Table |
1 IRE
| I i I
| L | oy
! Cary Chain |1 | &
A l
| ‘ |
I I
N
| |
an Look-Up Table K
bn
| | = =9
| L] | 3
! Carry Chain |! x
A l
| |
I I
) .
: |
i Look-Up Table [}
l (R
| | .g)%carwout
! Cary Chain |1 |
| |
| |
I I

Figure 2.3: Logic Elements Configured for Arithmetic Operations

CHAPTER 2. BACKGROUND AND MOTIVATION 9

The main programmable logic structures of Altera 10K50 FPGAs are the logic array blocks.
Each logic array block contains eight logic elements. The basic structure of a logic element is
shown in Figure 2.2. It consists of a four-input look-up table and a programmable register. This
architecture provides a register rich environment that can be used to implement circuits with many
pipeline stages. Each logic element also provides support for implementing fast arithmetic circuits
by providing fast carry chains. As shown in Figure 2.3, the four-input look-up table of each logic
element can be configured into two three-input look-up tables. One of the three-input look-up table
can be used to generate the sum signal of a full adder. The other three-input look-up table can be
used to generate the carry signal. There is dedicated hardware for transporting the carry signals
from one logic element to another, so fast carry propagation can be achieved for many arithmetic
circuits.

The Altera 10K50 FPGAs are supported by the Altera Max+plus Il software package. The

software package provides a comprehensive digital design environment.

2.4 FPGA Based Custom Computing Machines

FPGAs have been used in many machines to accelerate computations. These machines are called
the FPGA based custom computing machines. The graphic accelerator designed in this thesis can
be classified as an FPGA based custom computing machine. This section briefly reviews the major
progress in the field.

FPGA based custom computing machines can be classified based on the level of integration
of their fixed unit and their reconfigurable unit. Early FPGA based custom computing machines,
like PAM [BRV89, PB92] and SPLLASH 2 [BAW96], were constructed using commercially available
FPGA chips. Typically multiple FPGA chips are assembled on a computer board. The board
is connected to a fixed unit, usually a stand alone computer, through a bus. The bus serves the
purpose of communicating both data and control to and from the FPGA board. Typical applications
include long integer multiplication, RSA decryption, text searching and genome sequence matching.
As peripherals of their host computers, these systems are relatively simple to construct; however,
the limited communication bandwidth between the reconfigurable and fixed system poses a severe

limitation on the overall performance for many applications.

CHAPTER 2. BACKGROUND AND MOTIVATION 10

Fixed Hardware for FPGA Based Fixed Hardware for
Graphic Calculations Procedural Texture Graphic Calculations
Before Texture Mapping Generator After Texture Mapping

Figure 2.4: FPGA Based Custom Computer Machine for Procedural Texture Mapping

Later researchers investigated more closely coupled architectures. Machines like PRISM iteprism
and UofT reconfigurable coprocessor [R94], connect their fixed and reconfigurable units using ded-
icated data and control buses. However, the reconfigurable unit, typically constructed using com-
mercially available FPGA chips, and the fixed unit are implemented on separate chips.

Recent research has concentrated on constructing even more closely integrated machines. Ma-
chines like PRISC [Raz94], UofT OneChip [Wit95], and BRASS [Waw] closely integrate fixed and
reconfigurable units on the same chip. The reconfigurable FPGA structures are treated as regular
subsystems of the overall design. This level of integration provides the highest communication

bandwidth between the reconfigurable units and the remaining system.

2.5 Goals and Outlines

The goals of this thesis are to design an FPGA based custom computing machine for procedural
texture mapping, and implement the design on the TM-2. Figure 2.4 shows the block diagram of the
machine. The fixed hardware handles tasks like geometric transformations and texture parameter
calculation. Once the texture parameters are calculated, the system passes the parameters to the
FPGA subsystem to generate texture values. For maximum performance, the FPGAs are design
to be closely integrated with the rest of the system.

The performance goal of the design is to achieve close to real time animation performance. True
real time animation is not expected given the limited resources and the implementation platform.
A suite of procedural texture algorithms also have to be selected and translated into hardware
designs.

The remaining portion of this thesis is divided into four chapters. Chapter three discusses the
design of the machine. Chapter four describes the procedural textural algorithms selected and their

hardware implementations. Chapter 5 presents the performance and cost data obtained from the

CHAPTER 2. BACKGROUND AND MOTIVATION

TM-2 implementation. Chapter 6 presents the conclusion and possible future work.

11

Chapter 3

3-D Rendering System

A 3-D computer graphic rendering system was designed to evaluate the implementation issues of
synthesizing procedural textures in FPGA hardware. A prototype of the rendering system was also
constructed. The architecture of the rendering system is briefly described in this chapter. The
input to the rendering system is a list of triangles. Each vertex of these triangles is specified by
two triplets. The first triple, (z,y, z), specifies the position of the vertex in a 3-D world space. The
second triple, (u,v,w), specifies the position of the vertex in a 3-D texture space. The rendering
system performs four major operations on each triangle. First, the system transforms the 3-D world
coordinates of the vertices into the 2-D screen coordinates. Second, all pixels inside the triangle
are determined using the 2-D screen coordinates of the vertices. The texture coordinates of these
pixels are then calculated. Third, the system uses the texture coordinates to calculate the color of
each pixel. Finally the image is stored in a frame buffer and displayed on a screen.

Figure 3.1 shows the overall architecture of the rendering system. It consists of four major

components:

1. a world to screen space transformation (WSST) unit

World to Screen Screen to Texture Procedural
Space —= Space —=1 Texture —=1 Frame Buffer
Transformation Transformation Generator

Figure 3.1: 3-D Rendering System Using Procedural Textures

12

CHAPTER 3. 3-D RENDERING SYSTEM 13

| -

22

o o
Altera 5|15 &
10K50-3 = (= 3
4 S
Host House g

Local Area . Keeping ICUBE

Network Workstation Parallel FPGA %
Port k5
4 Altera > | > I
10K50-3 § g g

Nt

? \
\

‘ VGA Interface Card ‘

!

Monitor

Figure 3.2: Experimental Setup

2. a screen to texture space transformation (STST) unit
3. a procedural texture generator
4. a frame buffer

Each component performs one of the operations listed in the previous paragraph. Conventionally,
WSST functions are usually implemented in software; STST and the frame buffer are implemented
in hardware; and textures are implemented using a RAM. This thesis proposes to implement
textures in FPGAs as a procedural texture generator. A set of textures can be implemented by
loading their algorithms into the FPGA based procedural texture generator. Although STST and
the frame buffer should ideally be implemented in an ASIC, they were constructed in FPGAs on
the prototype.

The prototype of the 3-D rendering system was implemented on the TM-2. As shown in
Figure 3.2, the TM-2 consists of two boards. Each board contains two Altera 10K50 FPGAs and
four banks of 64-bit wide SRAM. The TM-2 system can be connected to a local area network
through a host workstation. Using the host, any workstation on the network can communicate

with the TM-2.

CHAPTER 3. 3-D RENDERING SYSTEM 14

B

_

“=CFPCAHEI—=FPCA #4 = Memory |—=| VGA Card —=| Monitor

WSST

STST

Procedural Texture Generator
Display Hardware

Om N 7

Figure 3.3: Partition of the Hardware Resources

The resources used in the implementation include one workstation, all four FPGAs on the TM-2,
one bank of TM-2 SRAM, a VGA card, and a monitor. The workstation is connected to the TM-2
via the local area network. The partitioning of the rendering system among all hardware resources
is shown in detail in Figure 3.3. Since there are only four FPGAs available, the entire rendering
system cannot be implemented on the TM-2 system. The WSST calculations are performed once
per triangle, while other units perform calculations once per pixel. Therefore, the WSST unit
is implemented on the workstation, as commonly done in many graphic cards. Two FPGAs are
allocated to the STST unit. One and a half FPGAs are allocated for the procedural texture
generator. The frame buffer is implemented using the remaining resources. It uses one bank of
TM-2 SRAM as a double frame buffer. It also controls the VGA card and the monitor.

All software is written in the C programming language. All hardware designs are done in
the Altera Hardware Description Language (AHDL). The rendering system uses a screen space
resolution of 512 x 512. The texture space resolution is 512 x 512 x 512. Each color is represented

using eight bits.

CHAPTER 3. 3-D RENDERING SYSTEM 15

3.1 World to Screen Space Transformation

The WSST unit can be built using a variety of architectures. In low cost implementation, the
functions of the unit can be performed by the CPU of a host system. In high performance imple-
mentation, on the other hand, the unit can be custom designed. The detail design of such a unit
is beyond the scope of this thesis. Instead, this section describes the algorithms executed by the
unit.

As mentioned earlier, the WSST unit transforms a list of triangles from the 3-D world space
to the 2-D screen space. The major operations are clipping, perspective projection, solid texture

parameter calculation and triangle-quad transformation.

3.1.1 Clipping Algorithm

Not all triangles within the initial triangle list can be displayed on the final screen. Only those
triangles that are within a finite volume in the 3-D world space are actually displayed, the rest
triangles are discarded from the list. The algorithms used to remove off-screen triangles from the
triangle list are called the clipping algorithms [FHvD%90]. The finite volume is called the view
volume [FHvD190]. Tor efficient implementation of the 3-D graphic system, the clipping process
is performed as early as possible in the rendering pipeline.

The clipping algorithm used in this thesis is similar to the Sutherland-Hodgman polygon-
clipping algorithm [FHvD*90, SH74]. The algorithm uses a perspective projection view volume as
shown in Figure 3.4. The view volume is bounded by six clipping planes in the 3-D world space.
The six clipping planes are z = —1, 2 = —0.05, 2 = 2z, * = —z, y = 2z, and y = —z. The front and
back planes are z = —0.05, and z = —1, respectively. In 3-D world space, the clipping algorithm
classifies all triangles in the triangle list into three classes, triangles that are completely inside the
view volume, triangles that are completely outside the view volume, and triangles that are partially
inside the view volume. Triangles that are completely inside the view volume are kept in the trian-
gle list while triangles that are completely outside the view volume are removed from the triangle
list.

Triangles that are partially inside the view volume are the triangles that have at least one vertex

inside the view volume and at least one vertex outside the view volume. The algorithm partitions

CHAPTER 3. 3-D RENDERING SYSTEM 16

Figure 3.4: View Volume

each of these triangles into two polygons, one completely inside the view volume and the other
completely outside the view volume. The polygon that is completely outside the view volume is
discarded. The polygon that is completely inside the view volume is partitioned into a series of
triangles which are then added back to the triangle list.

Figure 3.5 shows the algorithm used to clip a triangle partially inside the view volume. It is
a general clipping algorithm for polygons, so at the start, the triangle is copied into a polygon
structure. The algorithm clips the polygon against one clipping plane at a time. To clip a polygon
against a clipping plane, all intersection points between the edges of the polygon and the plane
are calculated using standard geometric equations. These intersection points and the vertices that
are on the same side of the plane as the view volume are then used to create a new polygon.
The vertices on the other side of the view volume are discarded. The new polygon then replaces
the current polygon; and the next clipping plane replaces the current clipping plane. The same
algorithm is repeated until all six clipping planes are clipped against. The final polygon is the
portion of the initial triangle that is completely inside the view volume and is always convex.

Figure 3.6 illustrates the method used to partition the clipped polygon into a series of triangles.
One vertex of the polygon is used in the creation of all triangles. This vertex and each neighboring

pair of the remaining vertices are used to create one triangle. This algorithm works only for convex

CHAPTER 3. 3-D RENDERING SYSTEM

function clip (t1)
—-- INPUT DESCRIPTION: t1 is the triangle to be clipped
let pl be a polygon with three vertices;
let p2 be a polygon with zero vertices;
set polygon pl to be identical to triangle ti;
for each clipping plane, cp, of the view volume do
for each vertex, vl, of the polygon pl do
if vl and the view volume are on the same side of cp then
increase the number of vertices of p2 by 1;
let the new vertex of p2 be identical to vi;
end if;
let v2 be identical to the right neighboring
vertex of vl on polygon pil;
let v3 be the intersection point between the
edge (v1,v2) and the clipping plane cp;
if v3 is between vl and v2 on edge (v1,v2) then
increase the number of vertices of p2 by 1;
let the new vertex of p2 be identical to v3;
end if;
end for;
set polygon pl to be identical to polygon p2;
set polygon p2 to be a polygon with zero vertices;
end for;
return pi;
end function;

Figure 3.5: Clipping Algorithm

vl

v7
v2

v6

v3

v4

Figure 3.6: Decomposing a Polygon into Triangles

CHAPTER 3. 3-D RENDERING SYSTEM 18

Solid Texture | Color
Algorithm

|
Screen Space Texture Space

Figure 3.7: Screen Space to Texture Space Transformation

polygons and produces incorrect results for concave polygons. The inputs to the clipping algorithm
are triangles. With triangular inputs, the algorithm produces only convex polygons; therefore, this

division algorithm always works for the chosen clipping algorithm.

3.1.2 Perspective Projection Algorithm

After clipping, the triangles are projected into the 2-D screen space using perspective projection.

The perspective projection is done once for every triangle vertex using the following equation:

Tsereen — mworld/zworld

Yscreen = yworld/zworld

Tworlds Yworlds and Zyeriq Tepresent the x, y, and z coordinates of the vertex in the world space,

while Zgepeen and Ygepeen represent the x and y coordinates in the screen space.

3.1.3 Solid Texture Parameter Calculation Algorithm

The perspective projection algorithm discussed in the previous section does not project every point
on a triangle into the screen space. Instead, only the three vertices of the triangle are projected.
The STST unit then uses the screen coordinates of these three vertices to find all screen pixels

inside the triangle.

CHAPTER 3. 3-D RENDERING SYSTEM 19

As shown in Figure 3.7, to determine the color of a pixel, the screen coordinates of the pixel are
used to calculate its texture coordinates. The texture coordinates are then used to calculate the
color of the pixel based on the specified procedural texture algorithm. The transformation from
the screen coordinates to the texture coordinates is performed by the STST unit. The texture
calculation is done by the procedural texture generator.

The algorithm for screen to texture space transformation is not widely published. During this
study, a method was independently derived to perform this transformation. In this method, the
WSST unit assists the STST unit by generating fifteen parameters for the screen to texture space
transformation. This section defines these fifteen parameters and discusses the algorithm used to
calculate these parameters.

The solid texture parameters are calculated based on the assumption that for each triangle,
there exists an affine transformation from the world space to the texture space and vice-versa. This

affine transformation is specified by the following set of equations:

aut+bv+cw+d=X
ev+ fo+gw+h=Y (3.1)
w+jvtkw+l=27

where a, b, ¢, d, e, f, g, h, 7, j, k, [are affine transformation constants; u, v, w are the texture
coordinates; and X, Y, Z are the world coordinates. In texture space, the plane in which the

triangle exists can be described by the following equation:
ou+pv+quw+r=20 (3.2)

where o, p, g, r are constants. Finally the perspective projection from world space to screen space

can be described by the following set of equations:

mzr =X
my=Y (3.3)
m=2/7

where z, y are the screen coordinates.

Substituting Equation 3.3 in Equation 3.1 and Equation 3.2 for X, Y, Z results in the following

CHAPTER 3. 3-D RENDERING SYSTEM 20

equations:
au+bv+ cw+d=mz
eu+ fv+ gw+ h=my (3.4)
i+ jot+kw+l=m
ou+pv+quw+r=20
Equation 3.4 describes the relationship between the screen coordinates, (z,y), and the texture
coordinates, (u,v,w). At this stage, the problem becomes to re-arrange Equation 3.4, so u, v, w,
m is written in terms of z and y. Since we have four linear equations in Equation 3.4, this problem

can be solved in the following way.

Re-arranging Equation 3.4 results in the following set of equations:

au+bv+cw—mez+0y+0=—d
eu+ fo+gw+ 0z —my+0=—h

(3.5)
i+ juv+ kw+ 0z 4+ 0y —m = —|
ou+pv+qw+0x+0y4+0=—r

Equation 3.5 has the following matrix representation:
Vi=MxV, (3.6)
where:))
U
v [_d] (4 b e -1 0 0]
w —h e f 0 -1 0
‘/a = ‘/b = M =
mx - T g 0 0 -1
my | -7 Lo p g 0 0 0 |
m

Use Gaussian elimination to numerically solve for X, such that

/Xroo /YO 1 /YOQ /YOS
X — Xio Xi1 X2 Xigz
Xoo Xo1 Xoo X3

)(30 X31 X32 X33

CHAPTER 3. 3-D RENDERING SYSTEM 21

and i i
1 00 A B C
01 0 D F F
/Y X M =
0 01 G H I
|00 0 J K L

where Xqo, Xo1, Xo2, Xo3, X10, X11, X12, X13, Xo0, Xo1, X22, Xo3, X50, X351, X352, X33, A, B,
C, D, E,F,G, H I, J, K, and L are all numerical constants, computed during the Gaussian

elimination. Solving analytically for u, v, w, and m, we have:

U = Usnit + (ago X + ao1 X y 4 Yoinit)/(aso X + as1 X y + Yainit)
v = Vipit + (@10 X 4+ a11 X y + Yiinit) /(@30 X & + az1 X y + Yainit) (3.7)
w = Winit + (a20 X &+ ag1 X y+ Yainit)/(as0 X & + az1 X y + Yainit)
m =7 = —M;nit/(az0 X + az1 X y + Yainit) (3-8)
where the fifteen solid texture parameters are:
ago = A X Minit, @01 = B X Minit, Yoinit = C X Minit,
aio = D X Mipit, ann = E X Mipit, Yiinit = F X Minq,
azo = G X Minit, a1 = H X Mipit, Yainit = I X Mings,
aso = J, as; = K, Ysinit = L,
Uinit = —dXoo — hXo1 — [Xo2 — 7 Xo3,
Vinit = —dXy0 — hX11 — X192 — r X3,
Winit = —dXq0 — hX91 — [X223 — 7 X3
and

Minit = (d X X304+ h X X31 +1 x X334+ 1 X Xa3)

Overall, the algorithm used by the WSST unit to calculate the fifteen parameters consists
of three steps. First, for a given triangle, the affine transformation between its texture space
representation and its world space representation is first calculated. These equations are listed as
Equation 3.1. Second, the plane in which the triangle exists in texture space is calculated. This
equation is listed as Equation 3.2. Finally, Equation 3.4 is constructed and Gaussian elimination
is used to calculate the fifteen parameters. Once these fifteen parameters are derived, they are
given to the STST unit. For each pixel in the given triangle, the STST unit transforms the screen

coordinates of the pixel into the corresponding texture coordinates using Equation 3.7.

CHAPTER 3. 3-D RENDERING SYSTEM 22

Figure 3.8: Two Intersecting Triangles

3.1.4 Triangle-Quad Transformation Algorithm

After perspective projection, some areas of the screen might be covered by more than one triangle.
The pixel colors in these screen areas should be determined by the triangles that are nearest to the
screen (the top triangle). Conventional graphic systems typically use the z-buffering [FHvDT90]
algorithm to identify the top triangle for each pixel in hardware. This method, however, would
require a large amount of memory and logic resources that are not available on the TM-2 system.
Instead for the prototype, the task of finding the top triangle for each area is performed by the
WSST unit. A scan-line algorithm [FHvD190, WREE67, Bou70, BK70, Wat70] is used for the task.
As other scan-line algorithms, this algorithm assumes that no triangles in the scene are intersecting
each other. If one triangle intersects another as shown in Figure 3.8, these triangles have to be
first divided into several non-intersecting triangles. This means, in Figure 3.8, triangle abc must be
divided into polygon bb'c’c and triangle ab’c’. Polygon bb'c’c has to be further divided into triangle
bb'c’ and triangle bec'.

This scan-line algorithm differs from other algorithms in the final outputs. Regular scan-
line algorithms output the final rendered images. This scan-line algorithm, on the other hand,
divides each scan-line into sections. Sections from different scan-lines are then collected into special
quadrilaterals called quads. These quads are the output of this scan-line algorithm. The quads,

along with their solid texture parameters, are sent to the STST unit, where they are finally rendered

CHAPTER 3. 3-D RENDERING SYSTEM 23

y regular quads y

T T T T T T T T

| | | | |
- - L - L J_ L _|J-_-L_4

|

|

. [] QAN
B LT

scan-lines

t

riagular'quads

Figure 3.9: Quads

onto the computer screen. The rest of this section describes the scan-line algorithm in detail.

Quads [Gal96] are quadrilaterals whose top and bottom edges are parallel to the scan-lines in
screen space. Figure 3.9 shows some examples of quads. As shown in the figure, triangles also can
be quads. A triangle is a quad if one edge of the triangle is parallel to the scan-lines in screen
space. Quads are chosen to be the WSST unit output and the STST unit input because they are
easier to render in hardware than triangles. Using quads as the STST unit input simplifies the
hardware design of the STST unit. In some other implementation, this dividing boundary between
the WSST unit functionality and the STST unit functionality can be changed based on the relative
complexity of the components.

To create quads, the list of triangles has first to be clipped, and perspectively projected into
the screen space. If the triangles are texture mapped, their solid texture parameters also have to
be calculated beforehand.

In screen space, the algorithm takes a list of triangles and generates a list of quads. The quads
are generated by investigating the triangle edges one scan-line at a time. Using an active edge
table, all edges that are on the current scan-line are recorded. These edges are called the active
edges. In the table, the active edges are sorted based on their intersection points with the current
scan-line. Edges with small z intersection coordinates are placed at the front of the table, while
edges with large z intersection coordinates are placed at the back of the table.

Moving from one scan-line to a neighboring scan-line, two events might arise that will change

CHAPTER 3. 3-D RENDERING SYSTEM 24

Scan-line# | Active Edges
| — initial table entry

————— el =" |

add e4 and €6 to the table
***** 2.| el,e2,e4,e6

move e in front of e2
***** 3. el,ed,e2,e6

remove e4; add e5
***** 4, el,e5,e2,e6

remove el and €2
***** 5.| €5,e6

Figure 3.10: Scan-line Conversion from Triangles to Quads

the contents of the active edge table. First, active edges might be deleted or added to the table.
An active edge on the previous scan-line might no longer be active on the current scan-line. This
edge must be deleted from the active edge table. Also an edge that is not active on the previous
scan-line might become active on the current scan-line. This edge must be added to the active edge
table. Second, the order of active edges might change. The z intersection coordinates between
the active edges and the scan-lines are different from one scan-line to the next. Whenever a new
scan-line becomes the current scan-line, the active edge table has to be resorted based on the new
intersection points. These two situations are illustrated in Figure 3.10.

The algorithm starts at the first scan-line on the screen and moves down the screen one scan-line
at a time. For each scan-line, the algorithm calculates the current active edge table. When the
contents of the active edge table is changed between two neighboring scan-lines, the top scan-line
marks the end of a group of quads and the bottom scan-line marks the beginning of a new group
of quads. When all scan-lines have been investigated, the entire screen is divided into a series of
quads. An example is shown in Figure 3.11. There are two triangles in this example. Using the

scan-line algorithm, the screen space is divided into seven quads. Three of them are covered by the

CHAPTER 3. 3-D RENDERING SYSTEM 25

\

A\\\\\\:\\\\A&\\\\\\\\\‘\\\\\\\\\

NN

Figure 3.11: Triangle to Quad Transformation

left triangle; and the rest four are covered by the right triangle.

The following method is used to determine the correct triangle that covers each quad. For each
quad, an interior point is used as a test point. In the screen space, each triangle that contains this
test point covers the screen area occupied by the quad. Among these triangles, the triangle that
is closest to the screen at the corresponding point in the world space is the closest triangle to the
screen area occupied by the quad. This triangle is then determined using Equation 3.8 and its solid
texture parameters are used to derive the solid texture parameters of the quad.

The geometry of a quad can be specified using six parameters [Gal96]:

® Yinit:

the top scan-line position

® Yfinalt

the bottom scan-line position

® Tleftinits

the z coordinate of the left edge and the top scan-line intersection

CHAPTER 3. 3-D RENDERING SYSTEM 26

Instruction | Instruction Fetching| Quad Quad to Scan-line | Scan-line Scan-lineto Pixel | Pixel
and Decoding Description Conversion Description Conversion Description
(X,Y,u,v,w)

Figure 3.12: Major Functional Blocks of STST Unit

® Tleftinct

the slope of the left edge

® Trightinits

the z coordinate of the right edge and the top scan-line intersection

® Trightinct

the slope of the right scan-line

To draw a texture mapped quad on the screen, the WSST unit communicates these six parameters

along with the fifteen solid texture parameters to the STST unit.

3.2 Screen to Texture Space Transformation

The WSST unit transforms a list of triangles in the 3-D world space into a list of quads in the 2-D
screen space. The STST unit is then used to transform each quad into a list of pixel descriptions.

Overall, the STST unit performs three tasks. These three tasks are illustrated in Figure 3.12.
First, the unit fetches and decodes instructions from the WSST unit. These instructions are
transformed into quad descriptions. Second, once an entire quad description is received, the STST
unit transforms the quad description into a series of scan-line descriptions. Third, these scan-line
descriptions are then transformed into a series of pixel descriptions.

As shown in Figure 3.12, the output of the STST unit consists of sets of five parameters, z,
y, u, v, w. Each set of these five parameters is used to describe a single pixel. Parameters z
and y specify the location of the pixel on the screen. Parameters u, v, and w specify the solid
texture coordinate associated with the given pixel. The solid texture coordinates are then sent to

the procedural texture generator for calculating the final color of the pixels.

CHAPTER 3. 3-D RENDERING SYSTEM 27

32

fze& § 25
opcode parameter value

field code field field

Figure 3.13: STST Unit Instruction Format

3.2.1 Instruction Fetching and Decoding Unit

The output of the WSST unit is a list of quads. Each quad in the list is specified by twenty-one
parameters. These parameters are communicated to the STST unit using the instruction format
shown in Figure 3.13. As shown in the figure, each instruction consists of thirty-two bits. These
thirty-two bits are divided into three fields: an op-code field, a parameter code field, and a value
field. The op-code field consists of two bits. The parameter code field consists of five bits; and the
immediate value field consists of twenty-five bits.

There is one instruction for each quad parameter. When the instruction is used to specify a
quad parameter, the op-code field is set to 0. The parameter code field is used to specify the type
of quad parameter associated with the instruction; these values are shown in detail in Table 3.1.
The value of the parameter is stored in the value field. The instruction fetching and decoding unit
contains twenty-one 25-bit registers. Each of these registers is used to store the value of one quad
parameter.

In addition to the quad parameter instructions, there are three more instructions in the instruc-
tion set. All these three instructions use only the op-code field. The parameter code field and the
value field are ignored for these instructions. The start instruction instructs the hardware to start
to render the quad based on the value currently stored in the quad parameter registers. When a
double frame buffer is used, the switch frame buffer instruction instructs the hardware to switch
to another frame buffer for rendering the quads that follows the instruction. The last instruction
is the clear screen instruction. It simply instructs the hardware to clear the entire screen area to
the background color. The formats of all instructions are shown in Table 3.1.

The basic structure of the instruction fetching and decoding unit is shown in Figure 3.14. The
unit consists of three major components, the controller, the decoder, and the register file. The

controller handles the communication between the unit and the rest of the system. As shown in the

CHAPTER 3. 3-D RENDERING SYSTEM

Instruction Name

Opcode

Parameter Code Description

quad parameter 0
quad parameter 1
quad parameter 2
quad parameter 3
quad parameter 4
quad parameter 5
quad parameter 6
quad parameter 7
quad parameter 8
quad parameter 9
quad parameter 10
quad parameter 11
quad parameter 12
quad parameter 13
quad parameter 14
quad parameter 15
quad parameter 16
quad parameter 17
quad parameter 18
quad parameter 19
quad parameter 20
start

switch frame buffer
clear screen

W NP OO OO OO OO oOoOoOoooooocoooCc oo oo

0 Yinit

1 Yfinal

2 Tleftingt

3 Tleftinc

4 T rightinit

5 Trightinc

6 Yoinit + @oo X Ticptinit + o1 X Yinit
7 Yiinit + @10 X Ticptinit + @11 X Yinit
8 Yoinit + @20 X Ticptinit + a21 X Yinit
9 Y3init + @30 X Ticptinit + a31 X Yinit
10 apo

11 aopl

12 aio

13 al

14 ag0

15 ag

16 asp

17 a31

18 Uinit

19 ‘/init

20 Winit

X start

X switch frame buffer

X clear screen

Table 3.1: STST Unit Instructions

28

CHAPTER 3. 3-D RENDERING SYSTEM 29

request request
Control j
acknowledge Unit acknolwdge
WSST opcode 2 \L clear screen (cls) < Quad to
Unit B Scan-line
parameter code | Decoder| switch frame buffer (sfb)] Conversion
5

¢21 Register Enable Signals Unit

32 Register File
value 25
(Twenty-One
Instruction 25-hit Registers)

Figure 3.14: Instruction Fetching and Decoding Unit

figure, the communication protocol used is the two-stage hand shake protocol [Kat90]. Since this
communication protocol is an asynchronous protocol, the instructions are processed independently
from the execution speed of the rest of the system. This is desirable, since the time, needed by the
WSST unit to perform its tasks, and the time, needed by the STST unit to render a quad, both
are variable and input dependent.

The decoder is also controlled by the controller. It accepts the op-code and parameter code
of the input instruction. When instructed by the controller, the decoder generates appropriate
register enable signals, the clear screen signal, or the switch buffer signal. If the input instruction
contains one of the quad parameters, the corresponding register in the register file is updated. All

register outputs are available in parallel to the quad to scan-line conversion unit of the STST unit.

3.2.2 Quad to Scan-line Conversion Unit

As shown in Figure 3.15, a quad can be decomposed into yfinai — Yinit + 1 number of scan-lines.

Each scan-line starts at point (zsey¢,ys) and ends at point (Zgright, Ys). Ys, Tsleft and Tgeigne are

CHAPTER 3. 3-D RENDERING SYSTEM 30

(xleftinityinit) scan-line#1— (xrightinit,yinit)
(xleftinit+xleftinc,yinit+1) | scanline#2—] (xrightinit+xrightinc,yinit+1)
(xleftinit+xleftinc* 2,yinit+2) scan-line #3— (xrightinit+xrightinc* 2,yinit+2)
(xleftinit+xleftinct n,)

yinit+n) 7/ scan-liné#n | (xrightinit+xrightinc* n,yinit+n)
(xleftinit+xleftinc* / . (xrightinit+xrightinc*
(yfina-yinit-1) yfina-1) |/ scan-line #(yfinal-yinit-1) — | (yfinal-yinit-1),yfinal-1)
(deftinitrefines | scan-line #(yfinal-yinit) —— (xrightinit+xrightinc*
(yfinal-yinit),yfinal) (yfinal-yinit).yfinal)

Figure 3.15: Decomposing a Quad into Scan-lines

defined by:
Ys = Yinit + 1
Tsleft = Tleftinit T Tleftine X N (3.9)
Tsright = Trightinit T Trightine X N
where n is an integer between 0 and yfinar — Yinit-
To implement solid texture mapping, four more variables, Ygs, Y15, Yos, Y3, are calculated by
the quad to scan-line conversion unit for every scan-line. These values are defined by the following

equations:

Yos = Yoinit + @00 X Ticftinit + @01 X Yinit + @00 X Tsdiff X 7+ agr X 1
Yis = Yiimit + @10 X Ticftinit + @11 X Yinit + @10 X Togigf X 0+ ayp X n (3.10)
Yos = Yoinit + @20 X Ticftinit + @21 X Yinit + @20 X Togips X 0+ a1 X1

Y35 = Yainit + @30 X Ticftinit + @31 X Yinit + @30 X Togiff X 0+ azp X n

where n is an integer and is between 0 and Yyinal — Yinit; and Togifr = |Zieftinit + Tleftine X 0| —
| Z1e ftinit + Tieftine X (0 —1)].

In the actual hardware implementation, vys, Tsiefs, Torights Yos, Yis, Y2s and Yz, are calculated
using the incremental algorithm shown in Figure 3.16. For every loop iteration, the algorithm
outputs the parameters for one scan-line. At first, variables y,, Zgett, Tsright, Yos, Yis, Yo, and Yag
are initialized to contain the values associated with the top scan-line of the quad. For every loop
iteration, the value of the above variables associated with the next scan-line down the screen is

calculated. The algorithm terminates when the last scan-line of the quad is reached.

CHAPTER 3. 3-D RENDERING SYSTEM 31

ys = yinit

xsleft = xleftinit

xsright = xrightinit

// Assigning YOs Y1s Y2s Y3s to parameter 6 7 8 9 respectively

YOs = YOinit + a00 * xleftinit + a0l * yinit
Yis = Yilinit + al0 * xleftinit + all * yinit
Y2s = Y2init + a20 * xleftinit + a2l * yinit
Y3s = Y3init + a30 * xleftinit + a3l * yinit

while (ys <= yfinal) {
ys = ys + 1;
xsleftold = floor(xsleft)
xsleft = xsleft + xleftinc
xsright = xsright + xrightinc
xsdiff = floor(xsleft) - xsleftold
YOs = YOs + a00 * xsdiff + aO1
Yis = Yis + al0 * xsdiff + all
Y2s = Y2s + a20 * xsdiff + a21
Y3s = Y3s + a30 * xsdiff + a31

Figure 3.16: Incremental Algorithm for Quad to Scan-line Conversion

The quad to scan-line conversion process is executed in parallel with the scan-line to pixel
conversion process. While the scan-line to pixel conversion unit is processing scan-line n, the quad
to scan-line conversion unit is generating scan-line n 4+ 1. This parallel execution method exploits
the inherent parallelism in the pixel rendering algorithm. It also provides the opportunities to
further simplify the hardware design for the quad to scan-line conversion unit.

The STST unit is designed to have a throughput of close to one pixel per clock cycle. Since
each scan-line typically consists of several pixels, more than one clock cycle can be used to generate
one scan-line. One of the possible designs for the quad to scan-line unit is shown in Figure 3.17.
Seven registers are used to contain the values of the variables vy, Zsicfs, Zsrigne, Yos, Y1s, Yas, and
Y3s. Another eleven registers contain the corresponding increment values for these variables. Four
of these, labeled agg, @10, a29, @30, are shift registers. Additional initialization logic is not shown
in the figure. Only one adder is used in the design. The controller uses multiple clock cycles to
calculate the seven parameters for each scan-line. If on average, there are many pixels per scan-
line, the multiple clock cycles used per scan-line will not have a significant impact on the overall

performance of the STST unit. However, if higher performance is desired, more adders should be

CHAPTER 3. 3-D RENDERING SYSTEM

1
xleftinc
xrightinc
a00
alo
m a20
L Ju a30
X a0l
=
a2l
S a3l
YOs xleftold
m Y1s
u Y2s
X Y3s
xsright
g xsleft e
xleftold ‘g’
3 xsdliff p
5 o 2 .%
[g 53 ©
> g—
Control = E
Unit

Figure 3.17: Datapath for Quad to Scan-line Conversion

CHAPTER 3. 3-D RENDERING SYSTEM 33

used.

In the current TM-2 implementation, three adders are used. Adder one is used to compute
ys, zsleft, zsright, and zsdiff. Adder two is used to computer Y0s and Y 1s. Adder three is
used to computer Y2s and Y 3s. Each multiplications is decomposed into a sequence of additions
completed over 10 clock cycles. Twenty-three cycles are needed to compute all the parameters for

one scan-line.

3.2.3 Scan-line to Pixel Conversion Unit

The scan-line to pixel conversion unit decomposes a scan-line into its constituent pixels. For each
pixel, five parameters z, ¥y, u, v, w are calculated. =z, y are coordinates of a pixel in the screen
space. u, v, w are coordinates of a pixel in the solid texture space. The left most pixel on the
scan-line is labeled number 0. To calculate the five parameters for the nth pixel on the scan-line,

four variables, Yy, Yi,, Y2y, and Y3, must be calculated using the following equations:

‘op = Yos + @01 X n
Y, =Y, tay xn
e TR (3.11)
Yo, =Y, +ag xn

Y3, =Y3,+az xn

where n is an integer and 0 < n < (zsright — zsleft). Then u,v,w are calculated based on Yj,,

Yip, Yaop, and Y3, using the following equations:

U= Uinit + YOp/YSp
v = Vigit + Y1,/ Yap (3.12)
w = Winit + YZp/YSp

x and y are calculated using the following equations:

T = Tsleft +n (3 13)
Y=1Ys
where n is an integer and 0 < n < (Zgright — Tsieft)-

For each scan-line, Equation 3.11, 3.12, and 3.13 can be calculated using the incremental algo-

rithm shown in Figure 3.18. In this algorithm, z, y, Yo,, Y1p, Y2, and Y3, are first initialized to

CHAPTER 3. 3-D RENDERING SYSTEM 34

X = xsleft

y =78
YOp = YOs
Yip = Yis
Y2p = Y2s
Y3p = Y3s
do {

u = Uinit + YOp / Y3p
v = Vinit + Yip / Y3p
W
X

+

= Winit + Y2p / Y3p

=x +1

YOp = YOp
Yip = Yip + aill
Y2p = Y2p + a21
Y3p = Y3p + a31

} while (x <= xsright)

a01

+ + +

Figure 3.18: Incremental Algorithm for Scan-line to Pixel Conversion

their corresponding values for the left most pixel on the scan-line. These initialization values are
the outputs from the quad to scan-line conversion unit. Then the algorithm moves to the right
one pixel at a time. For each loop iteration, z, y, Yo,, Yip, Y2p, and Y3, are updated and the
corresponding z, y, u, v, and w values are calculated. The loop ends when all pixels on the given
scan-line are considered.

One of the possible data-path designs for the above algorithm is shown in Figure 3.19. The
control logic and the initialization hardware are not shown in the figure. In this design, parameters,
ag1, A11, @21, 431, Uinit, Vinit, Winit, and y, are stored in registers and updated once per scan-line.
Yop, Yip, Yop, Y3y, and z are also stored in registers. The contents of these registers are initialized
to Yos, Yis, Yas, Y3s, and 4.5 respectively at the start of each scan-line calculation. For higher
performance, there is one adder dedicated to increment each of these variables. Once Yy,, Yi,,
Ys,, and Y3, are calculated for a given pixel, Yo,/ Ysp, Y1,/Y3,, and Y3,/ Y3, are evaluated to derive
the values for u, v, and w. To achieve high performance, three pipelined dividers are used for the
division operation. Since pipelined dividers are used, delay registers are needed to buffer the values
of x and .

Due to hardware resource limitations, the hardware design shown in Figure 3.19 is not im-

plemented on TM-2. Instead, only one 4-stage pipelined divider is used in the current TM-2

CHAPTER 3. 3-D RENDERING SYSTEM 35

[01 | [a1 | [& | [&1 | 1
Adder Adder Adder Adder Adder
LYoo J|[Yip J|[Y J{[¥ [|[x | [vy |

L L L

Pipelined Pipelined Pipelined Delay Delay
Divider Divider Divider Registers Registers

Figure 3.19: Datapath for Scan-line to Pixel Conversion

u
—_—

\ Procedural Texture| color
_— —
w Generator

—_—

Figure 3.20: 1/O Interface of the Procedural Texture Generator

implementation. The three divisions, Yy,/Ys,, Y1,/Ys,, and Y5,/ Y3, share the same divider in a

time-multiplexed fashion.

3.3 Procedural Texture Generator

The procedural texture generator and its procedural texture algorithms are discussed in detail in
chapter 4. In this section, the 1/O interface of the generator is briefly discussed.

There is little difference between the I/O interface of the generator and the 1/O interface of a
regular texture memory. As shown in Figure 3.20, The reconfigurable solid texture generator takes

in three bit-vectors, u, v, and w as its input. It generates a bit-vector representing the color as its

CHAPTER 3. 3-D RENDERING SYSTEM 36

X
—> frame buffer 0

y AN

—_— \

color control \ G) VGA
E— —=

s unit \ VGA Driver Monitor
—_— N \

sfb \

—> frame buffer 1

Figure 3.21: Frame Buffer

output.

3.4 Frame Buffer

The frame buffer hardware is shown in Figure 3.21. Overall, the system consists of five components,
the control unit, two frame buffers, the VGA driver, and the monitor. The two frame buffers are
used to implement a double buffering algorithm. While the contents of one frame buffer are being
updated by the control unit, the VGA driver displays the contents of the other frame buffer on the
monitor.

The input to the control unit is five bit-vectors, z, y, color, cls, and sfb. = and y indicate
the location of the pixel to be rendered. color indicates the color of the pixel to be rendered.
The corresponding location in the frame buffer is updated by the control unit according to the
values of z, y, and color. cls is the clear screen signal generated by the instruction fetching and
decoding unit shown in Figure 3.14; and sfb is the switch frame buffer signal also generated by
the instruction fetching and decoding unit. c/s and sfb signals take precedence over the z, y, and
color signals. If signal cls is set to one, the control unit clears the entire content of the frame buffer
to the background color. If signal sfb is set to one, the frame buffer being updated by the control
unit becomes the frame buffer being read by the VGA driver, and the frame buffer being read by
the VGA driver becomes the frame buffer being updated by the control unit.

Chapter 4

FPGA Implementations of Procedural
Texture Algorithms

Six procedural texture algorithms have been implemented in FPGAs. Each of these algorithms
takes three inputs, u, v, w. These three inputs specify a set of coordinates in a 3-D texture space.
The substances that these textures model can be classified into two categories, solid and gaseous.
Three textures model the coloring of solids including marble, brick, and wood. Another three
model the coloring of gaseous substances including fog, fire, and cloud. Despite the difference in
appearances, all six textures are fractal in nature — they all use the Perlin noise function to create
fractal effects. In software, these algorithms are implemented in IEEE floating point arithmetic.
Floating point hardware, however, is expensive to implement in FPGAs. Fixed point hardware is
used, instead, for minimum precision implementations. Extensive pipelining is used to maximize

the throughput of the algorithms.

4.1 Fractals and the Perlin Noise Function
This section describes the FPGA implementations of fractals and the Perlin noise function.

4.1.1 Fractals

In computer graphics, fractal functions are often synthesized by summing several versions of a base

function at different scales and frequencies. Figure 4.1 shows this process in one dimension. There

37

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS38

x 0.125

é

Base Function at 8 times frequency

x 0.250

:

Base Function at 4 times frequency

Fractal Function

(

x 0.500

Base Function at 2 times frequency

>

x 1.000

Base Function

Figure 4.1: One Dimensional Fractal Function

Figure 4.2: Fractal Function Hardware

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS39

are a series of functions at the left side of the figure. They are derived from the same base function
by varying the frequency and the amplitude. More formally, if the base function is represented by
the equation y = P(u), then the base function at m times the frequency can be represented by
the equation y = P(m X u). To create the fractal function, each version of the base function is
scaled inversely proportional to its frequency; then all versions are summed together. Therefore,

the fractal function becomes:

1
— x P(m X u)
m

y:P(u)—}—%xP(?xu)—l—...—}—

For every new version of the base function created, the frequency is usually doubled and the scale

factor is usually halved from the previous version. m is usually set to be between eight and sixty-

four. A 3-D fractal function uses a base function of three variables, P(u, v, w). All input variables
of the 3-D base function are scaled.

Figure 4.2 shows the architecture of the fractal function in detail. In the figure, blocks u, v, w,

and fractal are all registers. The multiplexers and the registers are controlled by a control unit

not shown in the figure. The hardware is used to implement two fractal functions, turbulence and

fractalsum. These functions are defined by the following formula:
turbulence = Y7_y 27 P(24u, 2%, 24w)
ragrm Pl B525h)|

where the function P(u, v, w) represents the Perlin noise function, the actual 3-I base function used.
The hardware implements the above two equations by scaling and accumulating either the value of
the Perlin noise function or the absolute value of the Perlin noise function into the register labeled
fractal. When the absolute value is used, the resulting fractal value is the turbulence. As the name
implies, the turbulence function simulates the turbulence characteristics found in many fluids and
solidified solids [EMP*94]. When the value of the Perlin noise function is directly used, the resulting
function is the fractalsum function, which is often used to simulate gas formations [EMP194]. In

both cases, four cycles are needed to create one fractal value.

4.1.2 Perlin Noise Function

The Perlin noise function is one of the most computationally efficient base functions. In this thesis,

a Perlin noise function of three-dimensional space was used. Informally, it can be described using

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS40

uint uint+1 uint uint+1 uint uint+1 uint uint+1
vint vint vint+1 vint+1 vint vint vint+1 vint+1
\L wint \L wint \L wint \L wint \L wint+1 \L wint+1 \L wint+1 \L wint+1
random random random random random random random random
number number number number number number number number
Linear ufracs Linear ufracs Linear ufracs Linear ufracs
Interpolation Interpolation Interpolation Interpolation
[T [T
Linear vfracs Linear vfracs
. I — . I m—
Interpolation Interpolation
[T
Linear wfracs
. I m—
Interpolation

!

Figure 4.3: Perlin Noise Function Hardware

J/ a J/ b 0 a
Li
Inter?ﬁtion < v

\L output v
\ ¥/

output

Figure 4.4: Linear Interpolation Unit

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS41

the following equation:

where R(z1,z2,z3) is a pseudo random function of its inputs; and I(zoo0, Z001, - - -5 T111, Tuy Tu Tuy)
is an interpolation function in three dimensions. This calculates the function value on the 8 corners
of a grid cell, and performs interpolation based on the associated values of the eight and the distance
between the point in question and each of these grid points [Per85].

The original Perlin noise function, as actually proposed by Ken Perlin, implements the function
R(z1, 22, 23), as three tables of 256 pre-generated pseudo random numbers stored in memory and
two adders [EMPT94]. This method can consume quite large amounts of memory, since multiple
copies of R(z1, 2, z3) are needed to fully exploit the parallelism available. A more efficient hardware
method of generating pseudo random function values using zor tables [Rau91] is used in this study.
This method provides significant saving in hardware.

The second improvement made to the original Perlin noise function for hardware implementa-
tion is to the interpolation method, (g0, Zoo1, - - -, £111, Tu, Tuy To). The original function uses an
computationally expensive wavelet interpolation method [EMP*94]. This method has some supe-
rior statistical properties than the ordinary 3-D linear interpolation method; however, it is much
more computationally expensive. In this study a smoothing function, sm(z) = 322 — 223, is used
to remove any second order discontinuities that might result from the linear interpolation process.
The interpolation function I(zggo, Zoo1, - - -, 2111, 24, Ty,) becomes
L(z000, Zoo1, - - -5 T111, SM(24,), sm(z,), sm(z,,)), where L(...) is the linear interpolation function.
By adding this smoothing function, the image quality of the 3-D linear interpolation is much im-
proved. The hardware consumption is still much lower than the wavelet method.

Figure 4.3 shows the Perlin noise hardware. The inputs are u, v, w. The fraction, floor and
ceiling values of each input are first calculated and are denoted by u frac, vfrac, w frac, uvint, vint,

wint, wint + 1, vint + 1, wint + 1, respectively. The function, R(z1,z2,z3), is implemented by

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS42

bc
10

random

number

V output

Figure 4.5: Random Number Generator

blocks, labeled random number. The function, I(zoo0, Zoo01,-- -, Z111, Tus Tuy Tw), 18 implemented
by blocks, labeled sm and linear interpolation. ufrac, vfrac, and wfrac are processed by the
smoothing function, sm. The smoothing function implements the equation sm(z) = 32% — 223 in
10K50 EAB memory blocks [Alt96]. The outputs of the smoothing function are denoted by u fracs,
v fracs, and wfracs.

The internal structure of the linear interpolation units is shown in Figure 4.4. FEach unit
implements the function f(a,b,¢) = @ + ¢ x (b — a). This is a special case of the general linear
interpolation formula, g(z) = ¢(zo) + ﬂ%(a@ — zg), where g(z¢) = a, g(z1) = b, 21 — 29 =1,
and z — xg = ¢. The input, ¢, must be a positive fraction value between 0 and 1. @ and b are real
numbers.

The internal structure of the random number unit is shown in Figure 4.5. For a given set

of inputs, the unit outputs a corresponding pseudo random number. The zor tables shown in

Figure 4.5 execute the function:

Yo = (zo and roo) zor ... zor (z, and roy,)

y1 = (zo and rig) zor ... zor (z, and ri,)

Yn = (20 and rng) zor ... zor (z, and r,,)

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS43

Figure 4.6: Marble Internal Structure

where (Yn, Yn—1, ..., %0) is the output bit vector, (z,, Zn_1,...,2o) is the input bit vector and
(7‘007 ro1, - - -J‘On)
(7‘107 11, -77‘1n)
(rn07 Tply .oy rnn)

is a set of pre-generated constant bit vectors [Rau91]. Since r;; is static, the entire zor table can
be implemented in approximately eight 4-input LUTs. This is much less expensive than a 256 x 8
RAM. The zor table is used to scramble its input bits into a random value. This scrambling process

is repeated three times to produce a random value for any point in space.

4.2 Perlin Noise Based 3-D Procedural Textures

4.2.1 Solid Type Procedural Textures

This section discusses the implementation of marble, wood and brick textures. All use the turbu-

lence fractal function.

Marble

The marble algorithm models the internal coloring of marble. As illustrated in Figure 4.6, marble is
formed by layers of colored rock deposits. Over time, different colored layers start to intermix with
each other because of the extremely high pressure and the geological movements. This process

generates the unique vein-like coloring inside the marble. This phenomenon is modeled by the

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS44

L]

turbulence

v

color table

marble color

Figure 4.7: Procedural Texture Generator Configuration for the Marble Texture

Figure 4.8: Marble Texture Mapped Cube

function:

M (u, v, w) = (turbulence(u,v, w)+ v) mod 128

M (u,v,w) is used to index into a color table of 128 entries. The color table is configured to store
the color of the various rock layers. Each color table entry represents the color of one layer; and the
address of the entry corresponds to the layer position. When the color table is accessed according
to v, the resulting 3-D texture image corresponds to the unmixed layers of marble. To simulate the
intermixing of layers over time, the turbulence value is added to v.

The hardware for generating the marble texture is shown in Figure 4.7. The final marble texture

mapped onto a cube is shown in Figure 4.8.

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS45

Figure 4.9: Wood Internal Structure

Wood

As illustrated by Figure 4.9, the internal structure of wood can be approximated by a series of
cones that are have random perturbations. A tree grows one layer every year. The color within
each layer varies with the seasons. The range of color within each layer is roughly the same from
one layer to another.

Wood is modeled by the following function:

W (u, v, w) = ((u? + v? + aw)+

turbulence(u, v, w)) mod 128

W (u, v, w) is used to index into a color table of 128 entries. The range of color within a single layer
is stored in the color table. The basic shape of each cone is modeled by function u? 4 v? + aw,
which is a hyperbolic function of u and v. The exact function for cones is Vu?Z +v2 + aw. The
hyperbolic function is less expensive to compute, and also models the non-uniform growth of trees,
where young trees grow much faster than older ones. The mod operation creates the layering effect
of cones. Adding turbulence to W (u,v,w) simulates the irregularity of tree growth.

The hardware for calculating the wood solid texture is shown in Figure 4.10. A wood texture
mapped cube is shown in Figure 4.11. Notice that the pattern is realistic and consistent across all

faces of the cube. This is more clearly shown in full color prints.

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS46

turbulence

‘ color table ‘

¢ wood color

Figure 4.10: Procedural Texture Generator Configuration for the Wood Texture

Figure 4.11: Wood Texture Mapped Cube

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS47

W brick
W mortar

Figure 4.12: Brick Wall Pattern

Brick

The brick texture is a two-dimensional procedural texture. It uses the u, v components of the
texture coordinates to determine the material at a given point in the brick wall. The brick pattern
is illustrated by Figure 4.12. As shown by the figure, a brick wall is constructed by mortar and
bricks. There is mortar around each brick; and there is a half brick shift from one row of bricks to
the next.

The algorithm first determines the layer of the brick using the following equation:

v
{H +2 X A/[HJ
where H is the height of a brick, My is the height of each layer of mortar. If the division results

in an even number, then the brick layer should be shifted to the left by half a brick width. The

following equation is used to shift the brick layer:
Upew = U + % + Mw

where W is the width of a brick, My is the width of each column of mortar. If the division results
in an odd number, then no shift is required and u,,,, is set to be u.
To determine if the point is in brick or mortar u, and v, are calculated using the following

equations:

Up = Upey mod (W + 2 x My)
v, =v mod (H +2 X Mp)

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS48

u
| +H(W+MW+MW)/2) |

—

ﬁv J(H+*MH+MH) | =I5 Even ?}—Q\%/

| mod (H+MH+MH) | | mod (W+MW+MW) |

| T S

‘>MH \ \<(H+MH)\ \>MW\ \<(W+MW)\
| |

w mortar brick
color color
up vy w

\ color table \
¢ brick wall color

Figure 4.13: Procedural Texture Generator Configuration for the Brick Texture

Figure 4.14: Brick Texture Mapped Cube

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS49

If Mg < u, < (H+ Myg) and Mw < v, < (W + Myw), then the point is in a brick, otherwise the
point is in mortar. If the point is in a brick, the turbulence value at the given point is used to index
into a table of 128 pre-generated brick colors. If the point is in mortar, the same turbulence value
is used to index into a table of 128 pre-generated mortar colors.

The hardware for calculating the brick texture is shown in Figure 4.13. A brick texture mapped

cube is shown in Figure 4.14.

4.2.2 Gas Type Procedural Textures

The fractalsum function is often used as a base function for modeling gaseous substances. Gaseous
procedural textures can be used as slides of transparencies in a rendering system. The slides can
be rotated through the 3-D texture space, independent from the motion of the slides in the world
space, to simulate the flow of gases [EMP194, FHvD190]. The key in simulating a variety of
gases based on a single base function is the use of gas shaping functions [EMP*94]. The solid
texture coordinates, (u, v, w), are passed through a gas shaping function to produce a new set of
coordinates, (ug4, vy, wy). The shaped coordinates are then passed to the fractalsum function. The

simplest gaseous procedural texture is the fog texture. Its shaping function is the following;:

Ug = U
Vg =70
Wy = w

The r, g, b color components are then calculated using the following equations

r=g=>b=|fractalsum(uy, vy, w,)|

The hardware for calculating the fog texture is shown in Figure 4.15. A slide of gas texture is
shown in Figure 4.16.

The cloud texture uses a shaping function of

Uy =u X 2
Vg =0
Wy =W

The b color component is set to be 255 to simulate the color of the sky. The r, g color components

are calculated based on the fractalsum function. First, ¢ = fractalsum(ug, vy, w,) is calculated. If

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS50

u v w
vy
fractalsum

{
lVg

g

Figure 4.15: Procedural Texture Generator Configuration for the Fog Texture

Figure 4.16: A Slide of Fog Texture

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS51

u v w
¥

*2

y

fractalsum

y
sort
0
/IR
> cutoff ? mux 255

mg ¢b

Figure 4.17: Procedural Texture Generator Configuration for the Cloud Texture

c is greater than a fixed cutoff value then

r=c

g=-c
otherwise;

r=20

g=20

The cutoff value is used to control the density of the synthesized cloud. To be precise, the above
algorithm models the stratus cloud. By varying the cutoff value and the shaping function, various
other cloud types, including cirrus and cumulus, can also be simulated [EMP*94].

The hardware for calculating the cloud texture is shown in Figure 4.17. A slide of cloud texture
is shown in Figure 4.18.

The fire texture uses a shaping function of

Uy = U
v
Vg = €
Wy = w

The fractalsum(ug,, vy, wy) is used to index into a color table of 128 entries, which stores a spectrum
of flame colors.
The hardware for calculating the fire texture is shown in Figure 4.19. A slide of fire texture is

shown in Figure 4.20.

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS52

Figure 4.18: A Slide of Cloud Texture

u v, w

|

exp

!

1/x

|

fractalsum

|

color table

\Lfire color

Figure 4.19: Procedural Texture Generator Configuration for Fire Texture

CHAPTER 4. FPGA IMPLEMENTATIONS OF PROCEDURAL TEXTURE ALGORITHMS53

Figure 4.20: A Slide of Fire Texture

Chapter 5

Performance and Hardware Cost

The previous two chapters complete the architectural description of the rendering system. This
chapter presents the performance and hardware cost data collected from the TM-2 implementation.
The chapter is divided into three sections. Section one lists the performance data of the rendering
system. Section two presents the hardware cost of the procedural texture generator. Section three
proposes an ASIC+FPGA implementation of the procedural texture generator. In this approach,
common procedural texture functions like the Perlin noise function is implemented in an ASIC

while FPGAs are used to implement application specific functions for each texture.

5.1 Performance

The portion of the rendering system implemented on the TM-2 uses two clock signals. The frame
buffer uses a clock frequency of 25.0 MHz. This speed is mandated by the VGA monitor that
the frame buffer controls. The rest of the system uses a clock frequency of 12.5 MHz. Under the
12.5 MHz clock, the system is able to produce one pixel for every four clock cycles. The WSST
software is executed on a 296MHz UltraSPARC-II CPU. The software is able to keep up with the
performance of the hardware.

The performance bottleneck for the rendering system is the STST unit. When implemented
on its own, the procedural texture generator can be clocked at a much higher clock frequency.
When measured in isolation from the rest of the system, the execution speed of all six textures

is determined by the fractal function unit. On the TM-2, the generator can run at a maximum

54

CHAPTER 5. PERFORMANCE AND HARDWARE COST 55

Textures Look-Up Memory Area Area as % of

Tables 1 Gb of DRAM Area
Marble 2839 1152 bits 47mm? 4.1%
Wood 3428 1152 bits 57mm? 5.0%
Brick 2870 1152 bits 47mm? 4.1%
Fog 2700 1152 bits 45mm? 3.9%
Cloud 3006 1152 bits 50mm? 4.4%
Fire 3152 5760 bits 52mm? 4.5%

Table 5.1: Area Cost of Implementing Procedural Texture Generator

clock frequency of 28 MHz for all six textures, but is limited to 12.5 MHz by rest of the system.
As designed, it can produce one pixel of texture for every four clock cycles. This performance
is equivalent to 7 Million Pixels Per Second (MPPS). The system can fill 230K pixels per frame
at 30 Hz frame rate. This performance is about 1400 times of the software performance of a
turbulence function using the original Perlin noise function [EMP794] and executed on a 296MHz
UltraSPARC-IT CPU. Also in [EMP194], Ebert describes a fast version of the Perlin noise function
which uses linear interpolation and direct table look-up for pseudo random number generation. The
hardware still achieves 17 times speedup comparing to a turbulence function using Ebert’s Perlin

noise function and executed on a 296 MHz UltraSPARC-II CPU.

5.2 Hardware Cost in Comparison to Memory Based Texture
Mapping

In memory based texture mapping, large amounts of memory are required to store three-dimensional
texture images. In this study, 3-D procedural textures are synthesized with a resolution of 512 x
512 x512. Eight bits are used to represent the color of each pixel. Without any form of compression,
each of these three-dimensional images requires 1 Gbit of storage memory. On the other hand, less
than one and half 10K50 FPGAs are required to implement each texture. This section compares
these two approaches to procedural texture mapping using silicon area as a yard stick.

Current state of the art technologies can package 256 Mbits of DRAM onto a 286mm? die
area using a 0.25um process [WWK*96]. Using the same DRAM technologies, 1 Gbit of memory
would require 1144mm? of die. Altera 10k100 FPGAs are the latest implementation of the 10K50

CHAPTER 5. PERFORMANCE AND HARDWARE COST 56

architecture. Scaled to the same 0.25um process, each logic array block of the 10k100 FPGAs
consumes 132,000um? of silicon [Bet98]. This area not only includes the area consumed by the
look-up tables, but also the associated routing resources for each logic array block. Since each logic
array block contains eight look-up tables, each look-up table consumes approximately 16, 000um?
of silicon. Besides logic array blocks, embedded memory blocks are also used in texture synthesis.
Each embedded memory block contains 2048 memory bits; and one embedded memory block is
approximately the same size as one logic array block.

The amount of FPGA resources consumed by each procedural texture is shown in column two
and column three of Table 5.1. Two types of resources are consumed, the look-up tables and the
embedded memory blocks. The total silicon area consumed by these programmable logic resources
are shown in column four. The fifth column of Table 5.1 shows the programmable logic area as a
percentage of the area consumed by 1 Gbit of DRAM. For the texture algorithms investigated, the
programmable logic implementations use 3.9% to 5.0% of the area required by the texture memory
storing uncompressed textures of the same resolution. The FPGAs can achieve even higher area

efficiency for algorithms with more input variables and larger texture spaces.

5.3 Single-Chip Graphic Accelerator with On-Chip Support for
Perlin Noise based Procedural Texture Mapping

The experimental data and the wide spread use of Perlin noise function also suggest the possibility
of synthesizing procedural textures in a mixture of ASIC and FPGA hardware. The combined
ASIC4+FPGA approach have the potential of synthesizing Perlin noise base textures at higher
speed and with smaller silicon area cost. The ASICH+FPGA procedural texture generator might
be small enough to fit on a single chip with the rest of the graphic accelerator. The possible floor
plan for such an single-chip design is shown in Figure 5.1.

The difference between this approach and the pure FPGA approach is that the Perlin noise
would be directly implemented in ASIC hardware, which has higher performance and higher logic
density. Some other commonly used procedural texture functions might also be directly imple-
mented in ASIC along with the Perlin noise. Only the remaining functions in procedural texture

algorithms are required to be implemented in FPGAs. Table 5.2 shows the possible performance

CHAPTER 5. PERFORMANCE AND HARDWARE COST 57

(u,v,w)

=
color | FPGA

skl B
core

ASIC
pipeline

ASIC
Perlin
noise

Figure 5.1: ASIC+FPGA Procedural Texture Mapping Organization

Textures Max. Clock Freq. MPPS Frames Per Second
Marble 125 MHz 125 476

Wood 74 MHz 74 282

Brick 47 MHz 47 179

Fog wiring delay Limited by ASIC Limited by ASIC
Cloud 43 MHz 43 164

Fire 50 MHz 50 190

Table 5.2: ASIC4+FPGA Performance

figure for the ASIC+FPGA implementation for six textures investigated. Table 5.3 shows the pos-
sible area consumption by the six textures. These data are measured by removing the Perlin noise
function from these six textures and measuring the speed and hardware costs of the remaining
FPGA circuits. It is assumed that the ASIC implementation of the Perlin noise function is able to
keep up with the performance of the FPGA circuits.

CHAPTER 5. PERFORMANCE AND HARDWARE COST

Textures Look-Up Memory FPGA Area
Tables

Marble 147 0 bits 2.4mm?
Wood 736 0 bits 13mm?
Brick 178 0 bits 2.9mm?
Fog 29 0 bits 0.47mm?
Cloud 335 0 bits 5.5mm?
Fire 481 4608 bits 8.2mm?

Table 5.3: Area cost of FPGA Hardware in ASIC+FPGA Approach

58

Chapter 6

Conclusions and Future Work

This thesis has presented the architecture of a 3-D computer graphic rendering system which
synthesizes 3-D procedural textures in FPGA hardware. The rendering system is implemented
on the TM-2 digital prototype system. The prototype system executes at a speed of 12.5 MHz
and can produce pixels at a rate of 3.125 MPPS. On the TM-2 system, only 3.9% to 5.0% of the
silicon area that would be consumed by the texture memory is consumed by FPGAs implementing
the procedural texture generator. The implementation also shown that the procedural texture
generator can achieve high performance required by the animation applications.

There are three main areas of future work. First, it is a time-consuming job to manually
translate procedural texture algorithms into hardware, especially when fixed point representation
is used. CAD tools need to be developed to automate most of this translation process. Second,
procedural texture algorithms contain many arithmetic computations. New programmable logic
architectures can be developed to target at arithmetic applications, so procedural texture algorithms
can be implemented in smaller and faster programmable hardware. Third, to make the concept of
synthesizing procedural texture in FPGA hardware practical, more procedural texture algorithms
need to be developed. More importantly these algorithms need to be efficiently implemented in

programmable logic.

59

Bibliography

[AL£96]

[Ath90]

[BACO6]

[BAWO6]

[Bet9s]

[BK70]

[BN76]

[Bou70]

[BRRV92]

[BRVS9]

Altera, Altera 10K FPGA Databook, 1996.

Peter Mark Athanas, An Adaptive Machine Architecture and Compiler for Dynamic

Processor Reconfiguration, PhD thesis, Brown University, 1990.

Andrew C. Beers, Manneesh Agrawala, and Navin Chaddha, “Rendering from com-

pressed Textures”, Computer Graphics (SIGGRAPH 96 Proceedings), 1996.

Duncan A. Buell, Jeffrey M. Arnold, and J. Water, Splash 2: FPGAs in a custom

computing machine, IEEE Computer Society Press, Los Alamos, CA, 1996.

Vaughn Betz, Architecture and CAD for Speed and Area Optimization of FPGAs, PhD

thesis, University of Toronto, 1998.

W.J. Bouknight and K.C. Kelly, An Algorithm for Producing Half-Tone Computer
Graphics Presentations with Shadows and Movable Light Sources, SJCC, 1970.

J.F. Blinn and M.E. Newell, Texture and Reflection in Computer Generated Images,
CACM, October 1976.

W.J. Bouknight, A Procedure for Generation of Three-Dimensional Half-Toned Com-
puter Graphics Presentations, CACM, September 1970.

Stephen D. Brown, J. Francis Robert, Jonathan Rose, and Zvonko G. Vranesic, Field-

Programmable Gate Arrays, Kluwer Academic Publisher, 1992.

Patrice Bertin, Didier Roncin, and Jean Vuillemin, “Introduction to Programmable

Active Memories”, Technical report, Digital Equipment Corporation, June 1989.

60

BIBLIOGRAPHY 61

[Cat74]

[CLY96]

[EMP+94]

[FHvD+90]

[Gal96]

[Gle87]

[HES9]

[Kat90]

[LGI*98]

[PB92]

[Pea85]

[Per85]

E. Catmull, A Subdivision Algorithm for Computer Display of Curved Surfaces, PhD
thesis, University of Utah, December 1974.

Don Cherepacha and David Lewis, “DP-FPGA: An FPGA Architecture Optimized for
Datapaths”, VLSI Design, V4-4, pp 329-343, 1996.

David S. Ebert, I. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Worley Steven,
Texturing and Modeling: A Procedural Approach, AP Professional, Boston, 1994.

James D. Foley, John Hughes, van Dam, Feiner, and Hughs, Computer Graphics:
Principles and Practice, Addison-Wesley, Reading, Mass, second edition, 1990.

David Galloway, “2-D Texture Mapping on TM-2”, Technical report, University of
Toronto, 1996.

James Gleick, Chaos: Making a New Science, Penguin Books, New York, 1987.

D. R. Godel Hofstadter and Bach Escher, An FEternal Golden Braid, Vintage Books,
New York, 1989.

John Hoggard, “Fractal Geometry”,
http://www.math.vt.edu/people/hoggard /FracGeomReport.

Randy H. Katz, Contemporary Logic Design, Addison-Wesley Pub Co, 1990.

David M. Lewis, David R. Galloway, Marcus van lerssel, Jonathan Rose, and Paul
Chow, “The Transmogrifier-2: A 1 Million Gate Rapid Prototyping System”, IFEFF
Trans. VLSI Systems, pp 188-198, June 1998.

Jean Vuillemin Patrice Bertin, Didier Roncin, “Programmable Active Memories: A

Performance Assessment”, Technical report, Digital Equipment Corporation, February

1992.

D.R. Peachey, “Solid Texturing of Complex Surfaces”, Computer Graphics (SIG-
GRAPH ’85 Proceedings), pp 279-286, 1985.

Ken Perlin, “An Image Synthesizer”, Computer Graphics (SIGGRAPH ’85 Proceed-
ings), V19, pp 287-296, July 1985.

BIBLIOGRAPHY 62

[PS88]

[R94]

[Rau91]

[Raz94]

[RBS94]

[RS94]

[RV92]

[SH74]

[Wat70]

[Waw]

[Wei98]

[Wit95]

[WREE67]

Heinz-Otto Peitgen Peitgen and Dietmar Saupe, The Science of Fractal Images,

Springer Verlag, 1988.

Jeschke R, “An FPGA-Based Reconfigurable Coprocessor for the IBM PC”, M.A .Sc,
University of Toronto, 1994.

B. Ramakrishna Rau, “Pseudo-Randomly Interleaved Memory”, ACM, 1991.

Rahul Razdan, PRISC: Programmable Reduced Instruction Set Computers, PhD thesis,
Harvard University, May 1994.

Rahul Razdan, Karl Brace, and Michael D Smith, “PRISC Software Acceleration
Techniques”, Technical report, Digital Equipment Corporation and Harvard Univer-

sity, 1994.

Rahul Razdan and Michael D Smith, “A High-Performance Microarchitecture with
Hardware-Programmable Functional Units”, In MICRO-27, Novermber 1994.

Sriram Rajamani and Pramod Viswanath Viswanath, “Accelerating the RISC proces-

sor using Programmable Logic”, Technical report, University of Berkely, 1992.

LLE. Sutherland and G.W. Hodgman, Reentrant Polygon Clipping, CACM, January
1974.

G.S. Watkins, A Real Time Visible Surface Algorithm, PhD thesis, University of Utah,
June 1970.

John Wawrzynek, “BRASS Research Group Home Page”,
http://www.cs.berkeley.edu/Research/Projects/brass/.

Eric W. Weisstein, CRC Concise Encyclopedia of Mathmatics, CRC Press, 1998.

Ralph D. Witting, “OneChip: an FPGA Processor with Reconfigurable Logic”,
M.A.Sc, University of Toronto, 1995.

C. Wylie, G.W. Romney, D.C. Evans, and A.C. Erdahl, Halftone Perspective Drawings
by Computer, FJCC, 1967.

BIBLIOGRAPHY 63

[WWK*96] Yohji Watanabe, Hing Wong, Toshiaki Kirihata, Daisuke Kato, John K. DeBrosse,
Takahiko Hara, Munehiro Yoshida, Hideo Mukai, Khandker N. Quader, Takeshi Na-
gai, Peter Poechmueller, Peter Pfefferl, Matthew R. Wordeman, and Shuso Fujii, “A
286mm? 256Mb DRAM with x 32 Both-Ends DQ”, IFEE Journal of Solid-State Cir-
cuits, V31, pp 567, April 1996.

