

Department of Electrical, Computer, & Biomedical Engineering Faculty of Engineering & Architectural Science

Course Outline (F2025)

BME506: Introduction to Software

Instructor(s)	Dr. Olivia Das [Coordinator] Office: ENG464 Phone: (416) 979-5000 x 556114 Email: odas@torontomu.ca Office Hours: TBA		
Calendar Description	This course introduces Biomedical Engineers to the principles and processes governing software design and development. Software development processes are explored in the context of procedural and object-oriented paradigms (C/C++). Topics include requirements analysis/specifications, detailed design and implementation, testing, inspection and debugging. Decomposition into classes and modules is examined from the point of view of data-flow, entity-relationships, and the unified modeling language (UML). Students will learn how to leverage industry standard tools for design and development. Laboratory work will focus on applications relating to biomedical engineering.		
Prerequisites	BME 328 and CEN 199		
Antirequisites	COE 318		
Corerequisites	None		
Compulsory Text(s):	A Concise Introduction to Software Engineering, Pankaj Jalote, (Undergraduate topics in Computer Science) ISBN-10:1848003013 ISBN-13:978-1848003019 Edition: 2008.		
Reference Text(s):	 C++ Primer Plus, Stephen Prata (6th Ed.), Publication Date: October 28, 2011, ISBN-10: 0321776402 ISBN-13: 978-0321776402. Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, 1995, Addison-Wesley Professional, First Edition, ISBN 0201633612. 		
Learning Objectives (Indicators)	At the end of this course, the successful student will be able to: 1. Demonstrate an in-depth understanding of key concepts related to procedural and object-oriented software engineering fundamentals. Apply procedural and object-oriented programming knowledge to solve software engineering problems. (1c) 2. Use the knowledge of procedural and object-oriented software design. Apply software engineering principles and theories to define an accurate problem statement through approaches such as use cases. (4a) 3. Use relevant techniques and tools for requirements analysis, design, and implementation of software. (5a) 4. Illustrate concepts of various stages of software development through appropriate graphical forms. (7c) NOTE: Numbers in parentheses refer to the graduate attributes required by the Canadian Engineering Accreditation Board (CEAB).		

Course Organization	3.0 hours of lecture per week for 13 weeks 2.0 hours of lab per week for 12 weeks 0.0 hours of tutorial per week for 12 weeks			
Teaching Assistants	TBA			
Course Evaluation	Theory Quiz Exam Midterm Exam Final Exam Laboratory Labs TOTAL: Note: In order for a student to pass a course, a nobtained. In addition, for courses that have both student must pass the Laboratory and Theory poin the combined Laboratory components and 50% refer to the "Course Evaluation" section above components (if applicable).	"Theory and Laboratory" components, the rtions separately by achieving a minimum of 50% in the combined Theory components. Please		
Examinations	Midterm exam Final exam			
Other Evaluation Information	None			
Teaching Methods	D2L Brightspace will be used. Zoom may be used if necessary.			
Other Information	None			

Course Content

Week	Hours	Chapters / Section	Topic, description
1	3		Introduction. (Lecture notes. Slides). C++ Basics & Control Flow. (Lecture notes. Slides).

2	3	Software Development Process. Requirements Analysis & Specifications. Functional/Non-functional requirements. (Lecture notes. Slides). C++ Functions. Function parameter(s). Function Overloading. (Lecture notes. Slides).
3	3	C++ Arrays. C-String. Pointers. (Lecture notes. Slides).
4	3	User Defined Data Types: C++ Enums and Structs. File I/O. (Lecture notes. Slides).
5	3	Stack and Queue. (Lecture notes. Slides).
6	3	OO - Introduction to Classes. Data Access. Member Functions & Constructors. Dynamic Memory and Destructors. (Lecture notes. Slides).
7	3	OO - Using Classes. Using C++ Classes. (Lecture notes. Slides). MIDTERM EXAM.
8	3	OO - Encapsulation. C++ Encapsulation. (Lecture notes. Slides).
9	3	OO - Inheritance. Polymorphism. (Lecture notes. Slides). C++ Abstract Classes. Inheritance. Polymorphism. (Lecture notes. Slides).

10	3	OO - UML Diagrams (Lecture notes. Slides). Introduction to Design Patterns. (Lecture notes. Slides).
11	3	Design Patterns (Continued). (Lecture notes. Slides).
12	3	OO - Advanced Topics: Exception handling. (Lecture notes. Slides).
13	3	Course Review.

Laboratory(L)/Tutorials(T)/Activity(A) Schedule

Week	L/T/A	Description
2	Lab0	Installation of Netbeans. Practice with Project Creation in Netbeans. (0 marks)
3	Lab1	Functions and Control Flow. (3 marks)
4	Lab2	Arrays and Command Line Arguments. (3 marks)
5	Lab3	Practice with Pointers. (3 marks)
6-7	Lab4	User Defined Types and File IO. (3 marks)
8-9	Lab5	Object-Oriented Design and Implementation of a simple application. (6 marks)

10	Lab6	Inheritance and Polymorphism. (6 marks)
11	Lab7	Design Patterns. (6 marks)

University Policies & Important Information

Students are reminded that they are required to adhere to all relevant university policies found in their online course shell in D2L and/or on the Senate website

Refer to the **Departmental FAQ page** for further information on common questions.

Important Resources Available at Toronto Metropolitan University

- <u>The University Libraries</u> provide research <u>workshops</u> and individual consultation appointments. There is a drop-in Research Help desk on the second floor of the library, and students can use the <u>Library's virtual research help service</u> to speak with a librarian, or <u>book an appointment</u> to meet in person or online.
- <u>Student Life and Learning Support</u> offers group-based and individual help with writing, math, study skills, and transition support, as well as <u>resources and checklists to support students as online learners.</u>
- You can submit an <u>Academic Consideration Request</u> when an extenuating circumstance has occurred that has significantly impacted your ability to fulfill an academic requirement. You may always visit the <u>Senate website</u> and select the blue radio button on the top right hand side entitled: Academic Consideration Request (ACR) to submit this request.

For Extenuating Circumstances, <u>Policy 167: Academic Consideration</u> allows for a once per semester ACR request without supporting documentation if the absence is less than 3 days in duration and is not for a final exam/final assessment. Absences more than 3 days in duration and those that involve a final exam/final assessment, always require documentation. Students must notify their faculty/contract lecturer once a request for academic consideration is submitted. See Senate <u>Policy 167: Academic Consideration</u>.

Longer absences are not addressed through Policy 167 and should be discussed with your Chair/Director/Program to be advised on next steps.

- FAQs Academic Considerations and Appeals
- Information on Copyright for Faculty/Contract Lecturers and students.

Lab Safety (if applicable)

Students are to strictly adhere and follow:

- a. The Lab Safety information/guidelines posted in the respective labs,
- b. provided in their respective lab handouts, and
- c. instructions provided by the Teaching Assistants/Course instructors/Technical Staff.

During the lab sessions, to avoid tripping hazards, the area around the lab stations should not be surrounded by bags, backpacks etc, students should place their bags, backpacks etc against the walls of the labs and/or away from their lab stations in such a way that it avoids tripping hazards.

Accessibility

- Similar to an <u>accessibility statement</u>, use this section to describe your commitment to making this course accessible to students with disabilities. Improving the accessibility of your course helps minimize the need for accommodation.
- Outline any technologies used in this course and any known accessibility features or barriers (if applicable).
- Describe how a student should contact you if they discover an accessibility barrier with any course materials or technologies.

Academic Accommodation Support

Academic Accommodation Support (AAS) is the university's disability services office. AAS works directly with incoming and returning students looking for help with their academic accommodations. AAS works with any student who requires academic accommodation regardless of program or course load.

- Learn more about <u>Academic Accommodation Support</u>.
- Learn how to register with AAS.
- Learn about Policy 159: Academic Accommodation of Students with Disabilities

Academic Accommodations (for students with disabilities) and Academic Consideration (for students faced with extenuating circumstances that can include short-term health issues) are governed by two different university policies. Learn more about <u>Academic Accommodations versus Academic Consideration and how to access each.</u>

Wellbeing Support

At Toronto Metropolitan University, we recognize that things can come up throughout the term that may interfere with a student's ability to succeed in their coursework. These circumstances are outside of one's control and can have a serious impact on physical and mental well-being. Seeking help can be a challenge, especially in those times of crisis.

If you are experiencing a mental health crisis, please call 911 and go to the nearest hospital emergency room. You can also access these outside resources at anytime:

- **Distress Line:**24/7 line for if you are in crisis, feeling suicidal or in need of emotional support (phone: 416-408-4357)
- Good2Talk:24/7-hour line for postsecondary students (phone: 1-866-925-5454)
- Keep.meSAFE: 24/7 access to confidential support through counsellors via My SSP app or 1-844-451-9700

If non-crisis support is needed, you can access these campus resources:

- Centre for Student Development and Counselling: 416-979-5195 or email csdc@torontomu.ca
- Consent Comes First Office of Sexual Violence Support and Education: 416-919-5000 ext 3596 or email osvse@torontomu.ca
- Medical Centre: call (416) 979-5070 to book an appointment

We encourage all Toronto Metropolitan University community members to access available resources to ensure support is reachable. You can find more resources available through the Toronto Metropolitan University Mental Health and Wellbeing website.