
COE758 Digital System Engineering – Project #1 Memory Hierarchy: Cache 1

COE758 – Digital Systems Engineering

Project #1 – Memory Hierarchy: Cache Controller

Objectives

 To learn the functionality of a cache controller and its interaction with block-

memory (SRAM based) and SDRAM-controllers.

 To get practical experience in the design and implementation of custom logic

controllers and interfacing to SRAM memory units and other logic devices.

 To learn VHDL-coding technique within the Xilinx ISE CAD environment of the

system and a hardware evaluation platform based on the Xilinx Spartan-3E

FPGA.

Background

Most computers are designed to operate with different types of memory organized in a

memory hierarchy. In such hierarchies, as the distance from the processor increases, so

does the volume of the memory; likewise, as the distance from the processor increases, so

too does the access time for each memory. This structure, along with appropriate

operating mechanisms, allows processors to efficiently use slower (cheaper) memory

effectively; by taking advantage of temporal and spatial locality, this hierarchy can

mitigate most of the delay associated with slow, high-volume memories. Closest to the

CPU is the Cache Memory. Cache memory is fast but quite small; it is used to store small

amounts of data that have been accessed recently and are likely to be accessed again soon

in the future. Data is stored here in blocks, each containing a number of words. To keep

track of which blocks are currently stored in Cache, and how they relate to the rest of the

memory, the Cache Controller stores identifiers for the blocks currently stored in Cache.

These include the index, tag, valid and dirty bits, associated with a whole block of data.

To access an individual word inside a block of data, a block offset is used as an address

into the block itself. Using these identifiers, the Cache Controller can respond to read and

write requests issued by the CPU, by reading and writing data to specific blocks, or by

fetching or writing out whole blocks to the larger, slower Main Memory. Figure 1 shows

a block diagram for a simple memory hierarchy consisting of CPU, Cache (including the

Cache controller and the small, fast memory used for data storage), Main Memory

Controller and Main Memory proper.

Figure 1: Memory Hierarchy Block Diagram

COE758 Digital System Engineering – Project #1 Memory Hierarchy: Cache 2

Application: Simple Cache Controller

1. General Description

The aim of this project is to design and implement a simplified Cache Controller for a

hypothetical computer system. The Cache for this computer system will store a total of

256 bytes, organized into blocks of 32 words each; each word will have 1 byte. Figure 2

shows the organization of the Cache.

As part of its operation, the CPU will issue read and write requests to the memory

system. As shown in Figure 1, the CPU only interacts directly with the Cache. The Cache

Controller must determine what action needs to be performed based on the current

contents of the Cache Memory, as well as the identifiers associated with each cache

block.

The complete structure for the target system is shown in Figure 3 below. The system

consists of the CPU, an SDRAM controller, and the cache acting as the intermediary

between the two. The cache itself consists of a controller and a local SRAM block; the

SRAM block is connected as shown. The project aim is to design the controller, and

using it, assemble a complete Cache using the BlockRAM memory module introduced in

Tutorial 3.

Figure 2: Organization of the Cache

(implemented using BlockRAM)

COE758 Digital System Engineering – Project #1 Memory Hierarchy: Cache 3

2. Specification

CPU Address Word Organization

The CPU issues 16 bit address words. The address word is received by the Cache

Controller and stored in the Address Word Register (AWR). The AWR consists of three

fields according to the cache organization (see Figure 2): the cache memory can store 8

blocks, each of which contains 32 1-byte words. Therefore, the Index field consists of 3

bits and the Offset field consists of 5 bits. Finally, the upper 8 bits of the address word

represent the Tag. Figure 3 illustrates the AWR organization.

Cache Controller Behavior

The aim of the project is to design a logic circuit that responds appropriately to read and

write requests made by the CPU. The potential actions available to the cache controller

are reading or writing to local (cache) memory, fetching whole data blocks from main

Figure 3: Complete Cache System

Figure 4: Address Word Register Fields

COE758 Digital System Engineering – Project #1 Memory Hierarchy: Cache 4

memory, or writing out blocks to main memory. The controller decides which of these

actions to take based on the indicators it stores internally, which describe the status of

each block in the cache memory. Specifically, the controller must compared the tag

portion of the address with the tags stored for each of the eight blocks, as well as check

the status of the dirty and valid bits for the block being targeted.

Behavioral Cases:

1. Write a word to cache [hit]

The cache receives a write request from the CPU. In this situation, the request

made by the CPU is found in the cache, thus being a cache hit. The index and

offset portion of the address supplied by the CPU is to be sent to the local SRAM

as the write address for the new data. The dirty and valid bits associated with the

targeted block must be set to 1, and the data must be written to the local SRAM

memory.

2. Read a word from cache [hit]

The cache receives a read request from the CPU. In this situation, the request

made by the CPU is found in the cache, thus being a cache hit. The index and

offset portion of the address supplied by the CPU is sent to the local SRAM and

the read data is routed back to the CPU.

3. Read/Write from/to cache [miss] and dirty bit = 0

A read or write request is received, and the associated block is not found in cache.

This requires performing a block replacement in Cache. First the dirty bit for the

corresponding CPU address must be analyzed. If the dirty bit is 0 then the entire

CPU address with the offset portion set to “00000” is passed to the SDRAM

memory controller as the base address of the block to be read from memory, and

the full block (all 32 bytes) must be read from the SDRAM memory controller,

and written to the local Cache SRAM. The tag value from the CPU address needs

to replace the value in the corresponding tag register, and the valid bit must be set

to 1. Finally, the requested read or write operation must be performed following

the procedure outlined for the hit cases above.

4. Read/Write from/to cache [miss] and dirty bit = 1

A read or write request is received, and the associated block is not found in cache

(a miss) which leads to a block replacement operation. Again the dirty bit for the

corresponding CPU address must be analyzed. If the dirty bit is 1 then the

recently used (and soon to be replaced) block must be written back into main

memory. The data block in local SRAM must be written to main memory via the

SDRAM memory controller. The block must be written to the following base

address: [Tag & Index & 00000].

Next, the new block (based on the address requested by the CPU) must be copied

into the cache. This requires reading data from the SDRAM memory controller

by issuing the following address: [Tag & Index & 00000]. The Tag is now the

COE758 Digital System Engineering – Project #1 Memory Hierarchy: Cache 5

Tag field of the AWR, requested by the CPU recently. The full block being read

from the SDRAM memory controller must be written to the local cache SRAM.

The original tag associated with this block must also be replaced with the new tag,

as issued by the CPU. Once this process is complete, the transaction originally

requested by the CPU can be completed, following the procedure outlined for the

hit cases above.

Interface Specifications

Below are described the details of the three interfaces the cache controller must interact

with: the CPU, the SDRAM controller, and the local SRAM (BlockRAM). In each case,

the type of information provided through the interface, as well as the interface timing is

described.

CPU

The CPU will periodically issue read or write transaction requests. The CPU interface

consists of a strobe CS, a read/write indicator WR/RD, a 16-bit address ADD, 8-bit data

in and out ports DIN and DOUT, and finally a ready indicator input RDY. Finally, the

CPU is assumed to be synchronous with the cache controller, and shares the same clock

signal, CLK. All interface ports are shown in Figure 5.

When the CPU issues a transaction, it first sets the appropriate address on the address bus

and sets the read/write indicator to the correct value; if a read is being issued, the WR/RD

signal is low (0), whereas if a write is issued, the signal is high (1). Finally, if a write is

performed, the appropriate data is also set on the DOUT port. Once all transaction signals

are stable, the strobe CS is asserted, and stays asserted for 4 clock cycles. Figure 6 below

shows an example of a write request.

Figure 5: CPU Interface

COE758 Digital System Engineering – Project #1 Memory Hierarchy: Cache 6

The ready indicator RDY is used by the Cache Controller to indicate to the outside world

when a transaction is complete. When idle, the cache controller should leave the RDY

signal asserted (thus indicating it is ready to accept transactions). Once a transaction is

received, the signals should be de-asserted, and should be kept low until the requested

operation is complete.

SDRAM Controller

The SDRAM Controller responds to block read and write requests issued by the Cache

Controller. Its interface is shown in Figure 7. The interface consists of a 16-bit address

ADD, a read/write indicator WR/RD, a strobe MEMSTRB and data in and out ports DIN

and DOUT. Finally, the SDRAM Controller is synchronized with the Cache Controller,

by sharing the same clock CLK.

Figure 6: CPU Transaction Example

Figure 7: SDRAM Controller Interface

COE758 Digital System Engineering – Project #1 Memory Hierarchy: Cache 7

The SDRAM Controller responds to block read and write requests from the Cache

Controller. To write a word to main memory, the correct base address is set on the ADD

port by the Cache Controller, and the WR/RD signal is asserted (set to 1) to indicate a

write operation. Finally, once all other signals are stable (one clock cycle later), the

strobe MEMSTRB is asserted for one clock cycle. To write a full block to memory, this

process is repeated 32 times, with the address and data changing accordingly. To read a

full block from memory, the same process is used, with the exception that WR/RD is held

low (0), and no data needs to be placed on the DIN port; rather, the data will appear on

the DOUT port. Figures 8 and 9 below show read and write processes for a full block of

data.

Figure 8: SDRAM Block Read

Figure 9: SDRAM Block Write

COE758 Digital System Engineering – Project #1 Memory Hierarchy: Cache 8

Local SRAM

The BlockRAM memory used to implement the local memory for the cache has the

interface shown in Figure 10 (based on Tutorial 3). It consists of an 8-bit address ADD,

8-bit data input and output DIN and DOUT, and a write enable signal WEN. Finally, the

BlockRAM shares the same clock CLK as the Cache Controller.

All operations issued to the cache controller are synchronized on the rising edge of the

clock. Read operations are performed by setting the appropriate address on the address

bus. The addressed data will propagate to the output DOUT after the next rising edge of

the clock. Write operations are performed by setting a specific address and data on the

appropriate ports, and then asserting the write enable signal WEN. On the next rising

edge, the data will be written to the specified address. Read and write operations are

shown in Figures 11 and 12 below.

Figure 10: BlockRAM Interface

Figure 11: BlockRAM Read Operation

COE758 Digital System Engineering – Project #1 Memory Hierarchy: Cache 9

4. Target

The target platform / device is Xilinx Spartan-3E FPGA

5. Results

The following parameters have to be determined based on hardware emulation:

N Cache performance parameter Time in nS

1 Hit / Miss determination time

2 Data access time

3 Block replacement time

4 Hit time (Case 1 and 2)

5 Miss penalty for Case 3 (when D-bit = 0)

6 Miss penalty for Case 4 (when D-bit = 1)

Timeline - Milestones

Week Outline What is Due?

4 Project #1 description and specs.

5 VHDL code and compilation. The symbol and block diagram.

6 Testing and VHDL corrections. VHDL code and correct compilation.

7 Hardware emulation.

8 Project #1 demonstration. Project #1 Final report submission

Figure 12: BlockRAM Write Operation

